Solve a small-molecule structure: Difference between revisions

Jump to navigation Jump to search
no edit summary
No edit summary
Line 7: Line 7:


== Determine the spacegroup ==
== Determine the spacegroup ==
There are two ways to determine the spacegroup:
# use [[XPREP]]
# use CCP4 [[ccp4dev:Symmetry_determination_with_Pointless|POINTLESS]] - latest docs at [http://www.ccp4.ac.uk/html/pointless.html]
These two possibilities also differ in the way how to obtain a file suitable for input to the SHELX program.


If there are different spacegroup possibilities then (downstream, in structure solution and refinement) we need to try all of them in turn, until we hit one that refines really satisfactorily (R-factor below, say, 5%) and gives a structure that makes sense.
If there are different spacegroup possibilities then (downstream, in structure solution and refinement) we need to try all of them in turn, until we hit one that refines really satisfactorily (R-factor below, say, 5%) and gives a structure that makes sense.
Line 75: Line 80:
  HKLF 4
  HKLF 4
  END
  END
=== use [[ccp4dev:Symmetry_determination_with_Pointless|POINTLESS]] to find the spacegroup ===
Unless the spacegroup number in XDS_ASCII.HKL already indicates this, [[ccp4dev:Symmetry_determination_with_Pointless|pointless]] needs to be told that the spacegroup may not be restricted to those 65 which occur for crystals from macromolecules:
echo CHIRALITY NONCHIRAL | pointless xdsin XDS_ASCII.HKL
gives
<pre>
        Zone                Number PeakHeight  SD  Probability  ReflectionCondition
Zones for Laue group P m m m
1 screw axis 2(1) [a]          11  0.990  0.135  *** 0.972  h00: h=2n
2 screw axis 2(1) [b]          59  1.000  0.097  *** 0.986  0k0: k=2n
3 screw axis 2(1) [c]          131  0.997  0.062  *** 0.994  00l: l=2n
4        glide plane b(a)    3754  0.012  0.050      0.000  0kl: k=2n
5        glide plane c(a)    3754  0.013  0.050      0.000  0kl: l=2n
6        glide plane n(a)    3754  0.951  0.061  *** 0.988  0kl: k+l=2n
7        glide plane a(b)    1961  0.953  0.050  *** 0.990  h0l: h=2n
8        glide plane c(b)    1961  0.104  0.056      0.004  h0l: l=2n
9        glide plane n(b)    1961  0.100  0.056      0.004  h0l: h+l=2n
10        glide plane a(c)    1074  0.960  0.058  *** 0.991  hk0: h=2n
11        glide plane b(c)    1074  0.080  0.058      0.003  hk0: k=2n
12        glide plane n(c)    1074  0.072  0.050      0.002  hk0: h+k=2n
<!--SUMMARY_END-->
Possible spacegroups:
--------------------
Indistinguishable space groups are grouped together on successive lines
'Reindex' is the operator to convert from the input hklin frame to the standard spacegroup frame.
'SysAbsProb' is an estimate of the probability of the space group based on
the observed systematic absences.
'Conditions' are the reflection conditions (absences)
'TotProb' is a total probability estimate (unnormalised) including the probability
of the crystal being centrosymmetric from the <|E^2-1|> statistic.
Chiral space groups are marked '*' and centrosymmetric ones 'O'
  Spacegroup        TotProb SysAbsProb    Reindex        Conditions
    <P n a a> ( 56) O  0.823  0.911                        h00: h=2n, 0k0: k=2n, 00l: l=2n, 0kl: k+l=2n, h0l: h=2n, hk0: h=2n (zones 1,2,3,6,7,10)
---------------------------------------------------------------
Selecting space group P n a a as there is a single space group with the highest score
</pre>
The spacegroup that was used for CORRECT does not matter. The next step then is to generate a HKLF 4 file, using XDSCONV:
SPACE_GROUP_NUMBER=  56
UNIT_CELL_CONSTANTS=    14.433    28.704    8.488  90.000  90.000  90.000
INPUT_FILE=XDS_ASCII.HKL
OUTPUT_FILE=56.hkl


== Solve the structure with [[SHELX C/D/E|SHELXD]] ==
== Solve the structure with [[SHELX C/D/E|SHELXD]] ==
1,330

edits

Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu