R-factors: Difference between revisions
Line 8: | Line 8: | ||
R = \frac{\sum_{hkl} \sum_{j} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}} | R = \frac{\sum_{hkl} \sum_{j} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}} | ||
</math> | </math> | ||
where <math>\langle I_{hkl}\rangle</math> is the average of symmetry- (or Friedel-) related observations of a unique reflection. | where <math>\langle I_{hkl}\rangle</math> is the average of symmetry- (or Friedel-) related observations of a unique reflection. | ||
It can be shown that this formula results in higher R-factors when the redundancy is higher. In other words, low-redundancy datasets appear better than high-redundancy ones, which obviously violates the intention of having an indicator of data quality! | It can be shown that this formula results in higher R-factors when the redundancy is higher (K. Diederichs and P.A. Karplus (1997). Improved R-factors for diffraction data analysis in macromolecular crystallography. Nature Struct. Biol. 4, 269-275 [http://strucbio.biologie.uni-konstanz.de/strucbio/files/nsb-1997.pdf]). In other words, low-redundancy datasets appear better than high-redundancy ones, which obviously violates the intention of having an indicator of data quality! | ||
* Redundancy-independant version of the above: | * Redundancy-independant version of the above: | ||
<math> | <math> | ||
R_{meas} = \frac{\sum_{hkl} \sqrt \frac{n}{n-1} \sum_{j=1}^{n} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}} | R_{meas} = \frac{\sum_{hkl} \sqrt \frac{n}{n-1} \sum_{j=1}^{n} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}} | ||
</math> | </math> | ||
which unfortunately results in higher (but more realistic) numerical values than R<sub>sym</sub> / R<sub>merge</sub> (Diederichs and Karplus (1997)[http://strucbio.biologie.uni-konstanz.de/strucbio/files/nsb-1997.pdf], and M.S. Weiss and R. Hilgenfeld (1997) On the use of the merging R-factor as a quality indicator for X-ray data. J. Appl. Crystallogr. 30, 203-205[http://dx.doi.org/10.1107/S0021889897003907]). | |||
which unfortunately results in higher (but more realistic) numerical values than R<sub>sym</sub> / R<sub>merge</sub> | |||
* measuring quality of averaged intensities/amplitudes: | * measuring quality of averaged intensities/amplitudes: | ||
for intensities use | for intensities use (M.S. Weiss. Global indicators of X-ray data quality. J. Appl. Cryst. (2001). 34, 130-135 [http://dx.doi.org/10.1107/S0021889800018227]) | ||
<math> | <math> | ||
R_{p.i.m.} | R_{p.i.m.} = \frac{\sum_{hkl} \sqrt \frac{1}{n} \sum_{j=1}^{n} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}} | ||
</math> | </math> | ||
and | <math>R_{mrgd-I}</math> is similarly defined in Diederichs and Karplus (1997). | ||
Similarly, one should use R<sub>mrgd-F</sub> as a quality indicator for amplitudes (Diederichs and Karplus (1997) [http://strucbio.biologie.uni-konstanz.de/strucbio/files/nsb-1997.pdf]), which may be calculated as: | |||
<math> | <math> | ||
R_{mrgd-F} = \frac{\sum_{hkl} \sqrt \frac{1}{n} \sum_{j=1}^{n} \vert F_{hkl,j}-\langle F_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}F_{hkl,j}} | R_{mrgd-F} = \frac{\sum_{hkl} \sqrt \frac{1}{n} \sum_{j=1}^{n} \vert F_{hkl,j}-\langle F_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}F_{hkl,j}} | ||
</math> | </math> | ||
with <math>\langle F_{hkl}\rangle</math> defined analogously as <math>\langle I_{hkl}\rangle</math>. | with <math>\langle F_{hkl}\rangle</math> defined analogously as <math>\langle I_{hkl}\rangle</math>. | ||
Revision as of 19:25, 17 February 2008
Historically, R-factors were introduced by ... ???
Definitions
Data quality indicators
In the following, all sums over hkl extend only over unique reflections with more than one observation!
- Rsym and Rmerge - the formula for both is:
[math]\displaystyle{
R = \frac{\sum_{hkl} \sum_{j} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}}
}[/math]
where [math]\displaystyle{ \langle I_{hkl}\rangle }[/math] is the average of symmetry- (or Friedel-) related observations of a unique reflection.
It can be shown that this formula results in higher R-factors when the redundancy is higher (K. Diederichs and P.A. Karplus (1997). Improved R-factors for diffraction data analysis in macromolecular crystallography. Nature Struct. Biol. 4, 269-275 [1]). In other words, low-redundancy datasets appear better than high-redundancy ones, which obviously violates the intention of having an indicator of data quality!
- Redundancy-independant version of the above:
[math]\displaystyle{
R_{meas} = \frac{\sum_{hkl} \sqrt \frac{n}{n-1} \sum_{j=1}^{n} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}}
}[/math]
which unfortunately results in higher (but more realistic) numerical values than Rsym / Rmerge (Diederichs and Karplus (1997)[2], and M.S. Weiss and R. Hilgenfeld (1997) On the use of the merging R-factor as a quality indicator for X-ray data. J. Appl. Crystallogr. 30, 203-205[3]).
- measuring quality of averaged intensities/amplitudes:
for intensities use (M.S. Weiss. Global indicators of X-ray data quality. J. Appl. Cryst. (2001). 34, 130-135 [4])
[math]\displaystyle{
R_{p.i.m.} = \frac{\sum_{hkl} \sqrt \frac{1}{n} \sum_{j=1}^{n} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}}
}[/math]
[math]\displaystyle{ R_{mrgd-I} }[/math] is similarly defined in Diederichs and Karplus (1997).
Similarly, one should use Rmrgd-F as a quality indicator for amplitudes (Diederichs and Karplus (1997) [5]), which may be calculated as:
[math]\displaystyle{
R_{mrgd-F} = \frac{\sum_{hkl} \sqrt \frac{1}{n} \sum_{j=1}^{n} \vert F_{hkl,j}-\langle F_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}F_{hkl,j}}
}[/math]
with [math]\displaystyle{ \langle F_{hkl}\rangle }[/math] defined analogously as [math]\displaystyle{ \langle I_{hkl}\rangle }[/math].
Model quality indicators
- R and Rfree : the formula for both is
[math]\displaystyle{
R=\frac{\sum_{hkl}\vert F_{hkl}^{obs}-F_{hkl}^{calc}\vert}{\sum_{hkl} F_{hkl}^{obs}}
}[/math]
where [math]\displaystyle{ F_{hkl}^{obs} }[/math] and [math]\displaystyle{ F_{hkl}^{calc} }[/math] have to be scaled w.r.t. each other. R and Rfree differ in the set of reflections they are calculated from: R is calculated for the working set, whereas Rfree is calculated for the test set.
what do R-factors try to measure, and how to interpret their values?
- relative deviation of
Data quality
- typical values: ...
Model quality
Relation between R and Rfree as a function of resolution
References:
- Tickle IJ, Laskowski RA and Moss DS. Rfree and the Rfree Ratio. I. Derivation of Expected Values of Cross-Validation Residuals Used in Macromolecular Least-Squares Refinement. Acta Cryst. (1998). D54, 547-557 [6]
- Tickle IJ, Laskowski RA and Moss DS. Rfree and the Rfree ratio. II. Calculation of the expected values and variances of cross-validation statistics in macromolecular least-squares refinement. Acta Cryst. (2000). D56, 442-450 [7]
- GJ Kleywegt and TA Jones (2002). Homo Crystallographicus - Quo vadis? Structure 10, 465-472. (reprint from http://xray.bmc.uu.se/cgi-bin/gerard/reprint_mailer.pl?pref=65)
- formula from that paper: Rfree = 1.065*R + 0.036
- plot with empirical data: http://xray.bmc.uu.se/gerard/supmat/rfree2000/rfminusr_vs_resolution.gif
- many more plots: http://xray.bmc.uu.se/gerard/supmat/rfree2000
- harry plotter (java): http://xray.bmc.uu.se/gerard/supmat/rfree2000/plotter.html
what kinds of problems exist with these indicators?
- (Rsym / Rmerge ) should not be used, Rmeas should be used instead (explain why ?)
- R/Rfree and NCS: reflections in work and test set are not independant