R-factors
Historically, R-factors were introduced by ... ???
Definitions
Data quality indicators
In the following, all sums over hkl extend only over unique reflections with more than one observation!
- Rsym and Rmerge : the formula for both is
[math]\displaystyle{
R = \frac{\sum_{hkl} \sum_{j} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}}
}[/math]
where [math]\displaystyle{ \langle I_{hkl}\rangle }[/math] is the average of symmetry- (or Friedel-) related observations of a unique reflection.
It can be shown that this formula results in higher R-factors when the redundancy is higher. In other words, low-redundancy datasets appear better than high-redundancy ones, which obviously violates the intention of having an indicator of data quality!
- Redundancy-independant version of the above:
[math]\displaystyle{
R_{meas} = \frac{\sum_{hkl} \sqrt \frac{n}{n-1} \sum_{j=1}^{n} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}}
}[/math]
which unfortunately results in higher (but more realistic) numerical values than Rsym / Rmerge
- measuring quality of averaged intensities/amplitudes:
for intensities use
[math]\displaystyle{
R_{p.i.m.} (or R_{mrgd-I}) = \frac{\sum_{hkl} \sqrt \frac{1}{n} \sum_{j=1}^{n} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}}
}[/math]
and similarly for amplitudes:
[math]\displaystyle{
R_{mrgd-F} = \frac{\sum_{hkl} \sqrt \frac{1}{n} \sum_{j=1}^{n} \vert F_{hkl,j}-\langle F_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}F_{hkl,j}}
}[/math]
with [math]\displaystyle{ \langle F_{hkl}\rangle }[/math] defined analogously as [math]\displaystyle{ \langle I_{hkl}\rangle }[/math].
Model quality indicators
- R and Rfree : the formula for both is
[math]\displaystyle{
R=\frac{\sum_{hkl}\vert F_{hkl}^{obs}-F_{hkl}^{calc}\vert}{\sum_{hkl} F_{hkl}^{obs}}
}[/math]
where [math]\displaystyle{ F_{hkl}^{obs} }[/math] and [math]\displaystyle{ F_{hkl}^{calc} }[/math] have to be scaled w.r.t. each other. R and Rfree differ in the set of reflections they are calculated from: R is calculated for the working set, whereas Rfree is calculated for the test set.
what do R-factors try to measure, and how to interpret their values?
- relative deviation of
Data quality
- typical values: ...
Model quality
what kinds of problems exist with these indicators?
- (Rsym / Rmerge ) should not be used, Rmeas should be used instead (explain why ?)
- R/Rfree and NCS: reflections in work and test set are not independant