47
edits
(18 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
In the following, all sums over hkl extend only over unique reflections with more than one observation! | In the following, all sums over hkl extend only over unique reflections with more than one observation! | ||
* R<sub>sym</sub> and R<sub>merge</sub> - the formula for both is: | * R<sub>sym</sub> and R<sub>merge</sub> - the formula for both is: | ||
: <math> | |||
where <math>\langle I_{hkl}\rangle</math> is the average of symmetry- (or Friedel-) related observations of a unique reflection. | R = \frac{\sum_{hkl} \sum_{j} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}} | ||
</math> | |||
where <math>\langle I_{hkl}\rangle</math> is the average of symmetry- (or Friedel-) related observations of a unique reflection. The formula is due to Arndt, U.W., Crowther, R.A. & Mallet, J.F.W. A computer-linked cathode ray tube microdensitometer for X-ray crystallography. J. Phys. E:Sci. Instr. 1, 510−516 (1968). Any unique reflection with n=2 or more observations enters the sums. | |||
It can be shown that this formula results in higher R-factors when the redundancy is higher (Diederichs and Karplus <ref name="DiKa97">K. Diederichs and P.A. Karplus (1997). Improved R-factors for diffraction data analysis in macromolecular crystallography. Nature Struct. Biol. 4, 269-275 [http://strucbio.biologie.uni-konstanz.de/strucbio/files/nsb-1997.pdf]</ref>). In other words, low-redundancy datasets appear better than high-redundancy ones, which obviously violates the intention of having an indicator of data quality! | It can be shown that this formula results in higher R-factors when the redundancy is higher (Diederichs and Karplus <ref name="DiKa97">K. Diederichs and P.A. Karplus (1997). Improved R-factors for diffraction data analysis in macromolecular crystallography. Nature Struct. Biol. 4, 269-275 [http://strucbio.biologie.uni-konstanz.de/strucbio/files/nsb-1997.pdf]</ref>). In other words, low-redundancy datasets appear better than high-redundancy ones, which obviously violates the intention of having an indicator of data quality! | ||
* Redundancy-independant version of the above: | * Redundancy-independant version of the above: | ||
: <math> | |||
R_{meas} = \frac{\sum_{hkl} \sqrt \frac{n}{n-1} \sum_{j=1}^{n} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}} | |||
</math> | |||
which unfortunately results in higher (but more realistic) numerical values than R<sub>sym</sub> / R<sub>merge</sub> | which unfortunately results in higher (but more realistic) numerical values than R<sub>sym</sub> / R<sub>merge</sub> | ||
(Diederichs and Karplus <ref name="DiKa97"/> , | (Diederichs and Karplus <ref name="DiKa97"/> , | ||
Weiss and Hilgenfeld <ref name="WeHi97">M.S. Weiss and R. Hilgenfeld (1997) On the use of the merging R-factor as a quality indicator for X-ray data. J. Appl. Crystallogr. 30, 203-205[http://dx.doi.org/10.1107/S0021889897003907]</ref>). | Weiss and Hilgenfeld <ref name="WeHi97">M.S. Weiss and R. Hilgenfeld (1997) On the use of the merging R-factor as a quality indicator for X-ray data. J. Appl. Crystallogr. 30, 203-205[http://dx.doi.org/10.1107/S0021889897003907]</ref>). | ||
==== measuring | ==== measuring precision of averaged intensities/amplitudes ==== | ||
for intensities use | for intensities use | ||
(Weiss <ref name="We01">M.S. Weiss. Global indicators of X-ray data quality. J. Appl. Cryst. (2001). 34, 130-135 [http://dx.doi.org/10.1107/S0021889800018227]</ref>) | (Weiss <ref name="We01">M.S. Weiss. Global indicators of X-ray data quality. J. Appl. Cryst. (2001). 34, 130-135 [http://dx.doi.org/10.1107/S0021889800018227]</ref>) | ||
R<sub>mrgd-I</sub> | |||
: <math> | |||
R_{p.i.m.} = \frac{\sum_{hkl} \sqrt \frac{1}{n-1} \sum_{j=1}^{n} \vert I_{hkl,j}-\langle I_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}I_{hkl,j}} | |||
</math> | |||
R<sub>mrgd-I</sub> (defined in Diederichs and Karplus <ref name="DiKa97"/>) only differs by a factor (FIXME: what is the factor? 0.5 or 1.4142 or ?) since it likewise takes the improvement in precision from multiplicity into account. R<sub>split</sub> , which is what the X-FEL community uses, is the same as R<sub>mrgd-I</sub> but that community seems not to be aware of this. | |||
Similarly, one should use R<sub>mrgd-F</sub> as a quality indicator for amplitudes <ref name="DiKa97"/>, which may be calculated as: | Similarly, one should use R<sub>mrgd-F</sub> as a quality indicator for amplitudes <ref name="DiKa97"/>, which may be calculated as: | ||
: <math> | |||
R_{mrgd-F} = \frac{\sum_{hkl} \sqrt \frac{1}{n-1} \sum_{j=1}^{n} \vert F_{hkl,j}-\langle F_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}F_{hkl,j}} | R_{mrgd-F} = \frac{\sum_{hkl} \sqrt \frac{1}{n-1} \sum_{j=1}^{n} \vert F_{hkl,j}-\langle F_{hkl}\rangle\vert}{\sum_{hkl} \sum_{j}F_{hkl,j}} | ||
</math> | |||
with <math>\langle F_{hkl}\rangle</math> defined analogously as <math>\langle I_{hkl}\rangle</math>. | with <math>\langle F_{hkl}\rangle</math> defined analogously as <math>\langle I_{hkl}\rangle</math>. | ||
Line 39: | Line 53: | ||
We can plot (Diederichs <ref name="Di06">K. Diederichs (2006). Some aspects of quantitative analysis and correction of radiation damage. Acta Cryst D62, 96-101 [http://strucbio.biologie.uni-konstanz.de/strucbio/files/Diederichs_ActaD62_96.pdf]</ref>) | We can plot (Diederichs <ref name="Di06">K. Diederichs (2006). Some aspects of quantitative analysis and correction of radiation damage. Acta Cryst D62, 96-101 [http://strucbio.biologie.uni-konstanz.de/strucbio/files/Diederichs_ActaD62_96.pdf]</ref>) | ||
<math> | |||
: <math> | |||
R_{d} = \frac{\sum_{hkl} \sum_{|i-j|=d} \vert I_{hkl,i} - I_{hkl,j}\vert}{\sum_{hkl} \sum_{|i-j|=d} (I_{hkl,i} + I_{hkl,j})/2} | |||
</math> | </math> | ||
which gives us the average R-factor of two reflections measured d frames apart. As long as the plot is parallel to the x axis there is no radiation damage. As soon as the plot starts to rise, we see that there's a systematical error contribution due to radiation damage. | which gives us the average R-factor of two reflections measured d frames apart. As long as the plot is parallel to the x axis there is no radiation damage. As soon as the plot starts to rise, we see that there's a systematical error contribution due to radiation damage. | ||
Line 48: | Line 64: | ||
To my knowledge, the only program that implements this currently (December 2008) is [[xds:XDSSTAT|XDSSTAT]]. | To my knowledge, the only program that implements this currently (December 2008) is [[xds:XDSSTAT|XDSSTAT]]. | ||
=== Comparing two sets of structure factor amplitudes or intensities === | |||
The following is symmetric, and suitable for comparing two data sets, or two model amplitudes: | |||
: <math> | |||
R_{scale}=\frac{\sum_{hkl}\vert F_{hkl,i}-F_{hkl,j}\vert}{0.5\sum_{hkl} F_{hkl,i}+F_{hkl,j}} | |||
</math> | |||
for amplitudes, and analogously for intensities. | |||
=== Model quality indicators === | === Model quality indicators === | ||
* R and [[iucr:Free_R_factor|R<sub>free</sub>]] : the formula for both is | * R and [[iucr:Free_R_factor|R<sub>free</sub>]] : the formula for both is | ||
: <math> | |||
R=\frac{\sum_{hkl}\vert F_{hkl}^{obs}-F_{hkl}^{calc}\vert}{\sum_{hkl} F_{hkl}^{obs}} | |||
</math> | |||
where <math>F_{hkl}^{obs}</math> and <math>F_{hkl}^{calc}</math> have to be scaled w.r.t. each other. R and R<sub>free</sub> differ in the set of reflections they are calculated from: R is calculated for the [[working set]], whereas R<sub>free</sub> is calculated for the [[test set]]. | where <math>F_{hkl}^{obs}</math> and <math>F_{hkl}^{calc}</math> have to be scaled w.r.t. each other. R and R<sub>free</sub> differ in the set of reflections they are calculated from: R is calculated for the [[working set]], whereas R<sub>free</sub> is calculated for the [[test set]]. | ||
==== Relation between R and R<sub>free</sub> as a function of resolution ==== | ==== Relation between R and R<sub>free</sub> as a function of resolution ==== | ||
Line 91: | Line 114: | ||
* Sets of reflections used for calculating R<sub>free</sub> should be maintained throughout a project. This is nicely discussed at http://www.bmsc.washington.edu/people/merritt/xplor/rfree_example.html . Note that none of the programs mentioned for selecting thin shells will allow you to extend the set of shells to higher resolution if you want to preserve your existing R-free set. | * Sets of reflections used for calculating R<sub>free</sub> should be maintained throughout a project. This is nicely discussed at http://www.bmsc.washington.edu/people/merritt/xplor/rfree_example.html . Note that none of the programs mentioned for selecting thin shells will allow you to extend the set of shells to higher resolution if you want to preserve your existing R-free set. | ||
* R-values and twinning: [http://www. | * R-values and twinning: [http://www.ysbl.york.ac.uk/refmac/papers/Rfactor.pdf Garib N. Murshudov (2011) "Some properties of crystallographic reliability index - Rfactor: effect of twinning" Appl. Comput. Math., V.10, N.2, 2011, pp.250-261]. From the paper, the R-value table for random models is: | ||
twinning twinning not | |||
modelled modelled | |||
twin 0.41 0.49 | |||
normal 0.52 0.58 | |||
Another paper which investigates the properties of R-values in the presence of twinning is [http://journals.iucr.org/d/issues/2013/07/00/ba5190/index.html P. R. Evans and G. N. Murshudov (2013) "How good are my data and what is the resolution?" Acta Cryst. (2013). D69, 1204-1214]. As the title indicates, this paper discusses at what resolution the data should be cut. One important finding is that a perfect model gives an R value of 42.0% (for a perfect twin, 29.1%) against pure noise. This tells us that a model that gives significantly lower R<sub>free</sub> in the (current) high resolution shell may benefit from including higher resolution data. | |||
* R-values and [[pseudo-translation]]: if you have pseudotranslation you should be aware that if you solve the structure by molecular replacement, starting R factors could be 70-80%. | |||
* data R-values are not meaningful at high resolution. This is discussed by [http://strucbio.biologie.uni-konstanz.de//strucbio/files/karplus2012_science.pdf Karplus and Diederichs (2012) "Linking crystallographic data and model quality". ''Science'' '''336''', 1030] | |||
==Notes== | ==Notes== | ||
<references/> | <references/> |