Phenix: Difference between revisions

NCS: try to correct
(2 intermediate revisions by the same user not shown)
Line 301: Line 301:


Single atoms on (or close enough to) a special position (i.e. on one or more 2-,3-,4- or 6-fold rotation axis/axes) are automatically restrained to stay on that special position. For anything else (like a ligand crossing a symmetry element) the trick is: reducing occupancy to 1/n for a n-fold rotation axis, and excluding atoms from non-bonded repulsions with their symmetry mates - see [[Phenix#Switching_off_specific_interactions]] .
Single atoms on (or close enough to) a special position (i.e. on one or more 2-,3-,4- or 6-fold rotation axis/axes) are automatically restrained to stay on that special position. For anything else (like a ligand crossing a symmetry element) the trick is: reducing occupancy to 1/n for a n-fold rotation axis, and excluding atoms from non-bonded repulsions with their symmetry mates - see [[Phenix#Switching_off_specific_interactions]] .
==== Bond across symmetry axis ====
There is a small hint at
[https://www.phenix-online.org/documentation/reference/refinement.html#definition-of-custom-bonds-and-angles]
For bonds to symmetry copies, specify the symmetry operation in xyz notation, for example:
symmetry_operation = -x-1/2,y-1/2,-z+1/2
The whole .eff file might look like:
refinement.geometry_restraints.edits {
    bond {
      action = *add delete change
      atom_selection_1 = chain A and resid 1199 and name O4
      atom_selection_2 = chain A and resid 1196 and name C1
      symmetry_operation = X-1/2,-Y+1/2,-Z
      distance_ideal = 1.439
      sigma = 0.020
    }
}
(this is from a posting of Oleg Sobolev to PHENIXBB on  Wed, 27 May 2020 15:55:27 -0700)


==== NCS ====
==== NCS ====
Line 307: Line 327:


* Automatic detection of NCS groups:
* Automatic detection of NCS groups:
  phenix.refine data.hkl model.pdb main.ncs=True
  phenix.refine data.hkl model.pdb ncs=True ncs_search.enabled=True
* Manual specification of NCS groups:
* Manual specification of NCS groups:
  phenix.refine data.hkl model.pdb ncs_groups.params ncs_search.enabled=True
  phenix.refine data.hkl model.pdb ncs_groups.params  
where ncs_groups.params contains e.g.:
where ncs_groups.params contains e.g.:
  refinement.ncs.restraint_group {
  refinement.ncs.restraint_group {
Line 416: Line 436:
* run your model through TLSMD server to identify TLS domains (it will produce PHENIX friendly TLS groups selections);
* run your model through TLSMD server to identify TLS domains (it will produce PHENIX friendly TLS groups selections);
http://skuld.bmsc.washington.edu/~tlsmd/
http://skuld.bmsc.washington.edu/~tlsmd/
* or use <code>phenix.find_tls_groups</code> to find TLS groups, and to generate a tls_selections.def file.
* use these selections for TLS refinement in PHENIX: see http://www.phenix-online.org/documentation/reference/refinement.html
* use these selections for TLS refinement in PHENIX: see http://www.phenix-online.org/documentation/reference/refinement.html


Line 431: Line 452:


Alternatively, phenix.refine can identify TLS groups on-the-fly, using <pre>tls.find_automatically=True</pre>
Alternatively, phenix.refine can identify TLS groups on-the-fly, using <pre>tls.find_automatically=True</pre>
* phenix.find_tls_groups now can find TLS groups automatically, and generate a tls_selections.def file.


At lower resolution than 1.5A if you run two consecutive refinements, first with TLS  
At lower resolution than 1.5A if you run two consecutive refinements, first with TLS