SHELX C/D/E: Difference between revisions

396 bytes added ,  19 March 2014
m (→‎SHELXC: remove duplicate SPAG)
Line 80: Line 80:


# The resolution cutoff. In the MAD case this is best determined by finding where the correlation coefficient between the signed anomalous differences for wavelengths with the highest anomalous signal (PEAK and HREM or PEAK and INFL) falls below about 30%. For SAD a less reliable guide is where the mean value of |ΔF|/σ(ΔF) falls below about 1.2 (a value of 0.8 would indicate pure noise), and for S-SAD with CuKα the data can be truncated where I/σ for the native data falls below 30. If unmerged data are used, SHELXC calculates a correlation coefficient between two randomly selected subsets of the signed anomalous differences; this is a better indicator because it does not require that the intensity esds are on an absolute scale, but it does require a reasonable redundancy and again the data can be truncated where it drops to below 30% (the CCP4 program SCALA prints a similar statistic).
# The resolution cutoff. In the MAD case this is best determined by finding where the correlation coefficient between the signed anomalous differences for wavelengths with the highest anomalous signal (PEAK and HREM or PEAK and INFL) falls below about 30%. For SAD a less reliable guide is where the mean value of |ΔF|/σ(ΔF) falls below about 1.2 (a value of 0.8 would indicate pure noise), and for S-SAD with CuKα the data can be truncated where I/σ for the native data falls below 30. If unmerged data are used, SHELXC calculates a correlation coefficient between two randomly selected subsets of the signed anomalous differences; this is a better indicator because it does not require that the intensity esds are on an absolute scale, but it does require a reasonable redundancy and again the data can be truncated where it drops to below 30% (the CCP4 program SCALA prints a similar statistic).
# The estimated number of sites (FIND) should be within about 20% of the true number. For SeMet or S-SAD phasing there should be a sharp drop in the occupancy after the last true site. For iodide soaks, a good rule of thumb is to start with a number of iodide sites equal to the number of amino-acids in the asymmetric unit divided by 15. If after SHELXD occupancy refinement the occupancy of the last site is more than 0.2 it might be worth increasing this number, and vice versa.  
# The estimated number of sites (FIND) should be within about 20% of the true number. For SeMet or S-SAD phasing there should be a sharp drop in the occupancy after the last true site. For iodide soaks, a good rule of thumb is to start with a number of iodide sites equal to the number of amino-acids in the asymmetric unit divided by 15. If after SHELXD occupancy refinement the occupancy of the last site is more than 0.2 it might be worth increasing this number, and vice versa.
# If the resolution d (second parameter on SHEL card) is > 2.0Å the disulfide bonds may not fully resolved, but in the range 2.8>d>2.0 the DSUL instruction may be used to fit S−S units to the density. This can dramatically improve the final phase quality. If DSUL is used, the first MIND parameter should be set to -3.5 and disulfides should be counted as single (super-sulfur) atoms for FIND.
# A common 'user error' is to set MIND -3.5 even though the distances between heavy atoms are less than 3.5 Å.  For example, in a Fe<sub>4</sub>S<sub>4</sub> cluster the Fe...Fe distance is about 2.7 Å, so MIND -2 would be appropriate. A disulfide bond has a length of 2.03 Å so then MIND -1.5 could be used to resolve the sulfur atoms, however if DSUL is used for this purpose MIND -3.5 is required.
# A common 'user error' is to set MIND -3.5 even though the distances between heavy atoms are less than 3.5 Å.  For example, in a Fe<sub>4</sub>S<sub>4</sub> cluster the Fe...Fe distance is about 2.7 Å, so MIND -2 would be appropriate. A disulfide bond has a length of 2.03 Å so then MIND -1.5 could be used to resolve the sulfur atoms, however if DSUL is used for this purpose MIND -3.5 is required.
# If heavy atoms can lie on special positions (as is the case with an iodide soak in a space group with twofold axes) the rejection of atoms on special positions should be switched off by giving the second MIND parameter as -0.1 (as in the above thaumatin example).
# If heavy atoms can lie on special positions (as is the case with an iodide soak in a space group with twofold axes) the rejection of atoms on special positions should be switched off by giving the second MIND parameter as -0.1 (as in the above thaumatin example).
1,328

edits