SHELX C/D/E: Difference between revisions

29 bytes removed ,  14 March 2008
m
no edit summary
mNo edit summary
mNo edit summary
Line 1: Line 1:
   
   
== '''SHELXC / SHELXD / SHELXE''' ==
== Overview ==


'''SHELXC''' is designed to provide a simple and fast way of setting up the files for the programs '''SHELXD''' (heavy atom location) and '''SHELXE''' (phasing and density modification) for macromolecular phasing by the MAD, SAD, SIR and SIRAS methods. These three programs may be run in batch mode or called from a GUI such as [[CCP4i]] or (better) [[hkl2map]]. SHELXC is much less versatile than the Bruker AXS XPREP program for this purpose, but if you are sure of the space group and there are no problems with the indexing or twinning and the f’ and f” parts of the scattering factors do not need to be refined, SHELXC should be adequate. SHELXC can read either HKL2000 format .sca files or SHELX .hkl files (F-squared unless the -f switch is used to specify F). To transfer data from CCP4 it is advisable to generate .sca files using 'output unmerged polish' from SCALA or to use the program mtz2sca written by Tim Grüne and supplied with SHELX.  The current version of SHELXC outputs extra useful diagnostic statistics if fed unmerged data. SHELXC, SHELXD and SHELXE are stand-alone executables that do not require environment variables or parameter files etc., so all that is needed to install them is to put them in a directory that is in the ‘path’ (e.g. /usr/local/bin or ~/bin under Linux).
'''SHELXC''' is designed to provide a simple and fast way of setting up the files for the programs '''SHELXD''' (heavy atom location) and '''SHELXE''' (phasing and density modification) for macromolecular phasing by the MAD, SAD, SIR and SIRAS methods. These three programs may be run in batch mode or called from a GUI such as [[CCP4i]] or (better) [[hkl2map]]. SHELXC is much less versatile than the Bruker AXS XPREP program for this purpose, but if you are sure of the space group and there are no problems with the indexing or twinning and the f’ and f” parts of the scattering factors do not need to be refined, SHELXC should be adequate. SHELXC can read either HKL2000 format .sca files or SHELX .hkl files (F-squared unless the -f switch is used to specify F). To transfer data from CCP4 it is advisable to generate .sca files using 'output unmerged polish' from SCALA or to use the program mtz2sca written by Tim Grüne and supplied with SHELX.  The current version of SHELXC outputs extra useful diagnostic statistics if fed unmerged data. SHELXC, SHELXD and SHELXE are stand-alone executables that do not require environment variables or parameter files etc., so all that is needed to install them is to put them in a directory that is in the ‘path’ (e.g. /usr/local/bin or ~/bin under Linux).
Line 72: Line 72:




== Critical parameters for SHELXD ==
== SHELXD : critical parameters ==


In general the critical parameters for locating heavy atoms with SHELXD are:<br>
In general the critical parameters for locating heavy atoms with SHELXD are:


1. The resolution cutoff. In the MAD case this is best determined by finding where the correlation coefficient between the signed anomalous differences for wavelengths with the highest anomalous signal (PEAK and HREM or PEAK and INFL) falls below about 30%. For SAD a less reliable guide is where delF/sig(delF) falls below about 1.2 (a value of 0.8 would indicate pure noise), and for S-SAD with CuKalpha the data can be truncated where I/sigma for the native data falls below 30. If unmerged data are used, SHELXC calculates a correlation coefficient between two randomly selected subsets of the signed anomalous differences; this is a better indicator because it does not require that the intensity esds are on an absolute scale, but it does require a reasonable redundancy and again the data can be truncated where it drops to below 30% (the CCP4 program SCALA prints a similar statistic).
1. The resolution cutoff. In the MAD case this is best determined by finding where the correlation coefficient between the signed anomalous differences for wavelengths with the highest anomalous signal (PEAK and HREM or PEAK and INFL) falls below about 30%. For SAD a less reliable guide is where delF/sig(delF) falls below about 1.2 (a value of 0.8 would indicate pure noise), and for S-SAD with CuKalpha the data can be truncated where I/sigma for the native data falls below 30. If unmerged data are used, SHELXC calculates a correlation coefficient between two randomly selected subsets of the signed anomalous differences; this is a better indicator because it does not require that the intensity esds are on an absolute scale, but it does require a reasonable redundancy and again the data can be truncated where it drops to below 30% (the CCP4 program SCALA prints a similar statistic).
Line 93: Line 93:




== Modes of operation of SHELXE ==
== SHELXE ==
 
=== Modes of operation ===


SHELXE has following modes of action (xx and yy are filename stems):<br>
SHELXE has following modes of action (xx and yy are filename stems):<br>
Line 109: Line 111:




== Phasing and density modification with SHELXE ==
=== Phasing and density modification ===


SHELXE normally requires a few command line switches, e.g.<br>
SHELXE normally requires a few command line switches, e.g.<br>
Line 127: Line 129:




== The free lunch algorithm (FLA) ==
=== The free lunch algorithm (FLA) ===


The new switch -e may be used to extrapolate the data to the specified resolution (the 'free lunch algorithm', based closely on work by the Bari group: Caliandro et al., Acta Cryst. D61 (2005) 556-565); -e1.0 can produce spectacular results when applied to data collected to 1.6 to 2.0 Å, but since a large number of cycles is required (-m400) and the 'contrast' and 'connectivity' become unreliable (the pseudo-free CC is the only reliable map quality indicator when the FLA is used), it may be best to establish the substructure enantiomorph and solvent content without -e first. The default setting when -e is not specified is to fill in missing low and medium resolution data but not to extrapolate to higher resolution than actually measured (to switch off this filling in, use -e999). The resolution requirements for the FLA still need to be explored, but so far there have been no reports of it causing a deterioration in map quality, and in a few cases the mean phase error was reduced by as much as 30º relative to density modification without it.<br>
The new switch -e may be used to extrapolate the data to the specified resolution (the 'free lunch algorithm', based closely on work by the Bari group: Caliandro et al., Acta Cryst. D61 (2005) 556-565); -e1.0 can produce spectacular results when applied to data collected to 1.6 to 2.0 Å, but since a large number of cycles is required (-m400) and the 'contrast' and 'connectivity' become unreliable (the pseudo-free CC is the only reliable map quality indicator when the FLA is used), it may be best to establish the substructure enantiomorph and solvent content without -e first. The default setting when -e is not specified is to fill in missing low and medium resolution data but not to extrapolate to higher resolution than actually measured (to switch off this filling in, use -e999). The resolution requirements for the FLA still need to be explored, but so far there have been no reports of it causing a deterioration in map quality, and in a few cases the mean phase error was reduced by as much as 30º relative to density modification without it.<br>
1,330

edits