CC* -

Linking crystallographic model and data quality

Kay Diederichs

Crystallography has been highly successful

Could it be any better?

Confusion - what do these mean?

$R_{\text {sym }}$
$\mathrm{Mn}(1 / s d)$
$\mathrm{CC}_{\text {anom }}$
$R_{\text {pim }}$

Topics

Signal versus noise
Random versus systematic error
Accuracy versus precision
Unmerged versus merged data
R-values versus correlation coefficients

Choice of high-resolution cutoff

signal vs noise

easy

hard

threshold of "solvability"

James Holton slid ${ }^{\text {n }}$

„noise": what is noise? what kinds of errors exist?

noise $=$ random error + systematic error
random error results from quantum effects
systematic error results from everything else: technical or other macroscopic aspects of the experiment

Random error (noise)

Statistical events:

- photon emission from xtal
- photon absorption in detector
- electron hopping in semiconductors
(amplifier etc)

systennetic errors (noise)

- beam flicker (instability) in flux or direction
- shutter jitter
- vibration due to cryo stream
- split reflections, secondary lattice(s)
- absorption from crystal and loop
- radiation damage
- detector calibration and inhomogeneity; overload
- shadows on detector
- deadtime in shutterless mode
- imperfect assumptions about the experiment and its geometric parameters in the processing software

Adding noise

James Holton slide

Adding noise

$$
1+1=1.4
$$

James Holton slide

Adding noise

$$
1+1=1.4
$$

$$
\sigma_{1}^{2}+\sigma_{2}^{2}=\sigma_{\text {total }}{ }^{2}
$$

James Holton slide

Adding noise

$$
1^{2}+1^{2}=1.4^{2}
$$

$$
\sigma_{1}^{2}+\sigma_{2}^{2}=\sigma_{\text {total }}{ }^{2}
$$

James Holton slide

Adding noise

$$
\begin{gathered}
1^{2}+1^{2}=1.4^{2} \\
3^{2}+1^{2}=3.2^{2} \\
\sigma_{1}^{2}+\sigma_{2}^{2}=\sigma_{\text {total }}{ }^{2}
\end{gathered}
$$

James Holton slide

Adding noise

$$
\begin{gathered}
1^{2}+1^{2}=1.4^{2} \\
3^{2}+1^{2}=3.2^{2} \\
10^{2}+1^{2}=10.05^{2}
\end{gathered}
$$

James Holton slide

This law is only valid if errors are independent!

How do random and systematic error depend on the signal?

 random error obeys Poisson statistics error = square root of signalSystematic error is proportional to signal error $=\mathbf{x}$ * signal (e.g. $x=0.02 \ldots 0.10$)
(which is why James Holton calls it "fractional error"; there are exceptions)

Consequences

- need to add both types of errors
- at high resolution, random error dominates
- at low resolution, systematic error dominates
- but: radiation damage influences both the low and the high resolution (the factor x is low at low resolution, and high at high resolution)

How to measure quality?

[^0]
What is the „true value"?

\rightarrow if only random error exists, accuracy $=$ precision (on average)
\rightarrow if unknown systematic error exists, true value cannot be found from the data themselves
\rightarrow a good model can provide an approximation to the truth
\rightarrow model calculations do provide the truth
\rightarrow consequence: precision can easily be calculated, but not accuracy
\rightarrow accuracy and precision differ by the unknown systematic error
All data quality indicators estimate precision (only), but YOU want to know accuracy!

Numerical example

Repeatedly determine $\pi=3.14159 \ldots$ as $2.718,2.716,2.720$

high precision, low accuracy.

Precision= relative deviation from average value= $(0.002+0+0.002) /(2.718+2.716+2.720)=0.049 \%$
Accuracy= relative deviation from true value=
(3.14159-2.718) / 3.14159 = 13.5\%

Repeatedly determine $\pi=3.14159 \ldots$ as $3.1,3.2,3.0$: low precision, high accuracy
Precision= relative deviation from average value= ($0.04159+0+0.05841+0.14159) /(3.1+3.2+3.0)=2.6 \%$
Accuracy= relative deviation from true value: 3.14159-3.1 = 1.3\%

Calculating the precision of unmerged data

Precision indicators for the unmerged (individual) observations:

$$
\begin{aligned}
& \left\langle/ / \sigma_{\mathrm{i}}>\quad\left(\sigma_{\mathrm{i}}\right. \text { from error propagation) }\right. \\
& R_{\text {merge }}=\frac{\sum_{h k l} \sum_{i=1}^{n}\left|I_{i}(h k l)-\bar{I}(h k l)\right|}{\sum_{h k l} \sum_{i=1}^{n} I_{i}(h k l)} \\
& R_{\text {meas }}=\frac{\sum_{h k l} \sqrt{\frac{n}{n-1}} \sum_{i=1}^{n}\left|I_{i}(h k l)-\bar{I}(h k l)\right|}{\sum_{h k l} \sum_{i=1}^{n} I_{i}(h k l)} \quad \mathrm{R}_{\text {meas }} \sim 0.8 /\left\langle/ / \sigma_{\mathrm{i}}\right\rangle
\end{aligned}
$$

Averaging („merging") of observations

Intensities:

$$
I=\sum 1 / \sigma_{i}^{2} / \sum 1 / \sigma_{i}^{2}
$$

Sigmas:

$$
\sigma^{2}=1 / \sum 1 / \sigma_{i}^{2}
$$

(see Wikipedia: „weighted mean")

Merging of observations may improve accuracy and precision

- Averaging („merging") requires multiplicity („redundancy")
- (Only) if errors are unrelated, averaging with multiplicity n decreases the error of the averaged data by sqrt(n)
- Random errors are unrelated by definition: averaging always decreases the random error of merged data
- Averaging may decrease the systematic error in the merged data. This requires sampling of its possible values - „true multiplicity"
- If errors are related, precision improves, but not accuracy

Calculating the precision of merged data

- using the sqrt(n) law: <l/б(I)>

$$
\left.R_{p i m}=\frac{\sum_{h k l} \sqrt{1 / n-1} \sum_{i=1}^{n}\left|I_{i}(h k l)-\bar{I}(h k l)\right|}{\sum_{h k l} \sum_{i=1}^{n} I_{i}(h k l)} \quad \mathrm{R}_{\mathrm{pim}} \sim 0.8 /<l / \sigma\right\rangle
$$

- by comparing averages of two randomly selected half-datasets X, Y :

H,K,L	I in order of measurement	Assignment to half-dataset	Average I of (
1,2,3	1001101209080100	X, X, Y, X, Y, Y	100100
$1,2,4$	50604560	Y XYX	6047.5
$1,2,5$	1000105011001200	X Y YX	11001075

I / σ with $\sigma^{2}=1 / \sum 1 / \sigma_{i}^{2}$
I/sigma (merged data)

$\operatorname{CC}(1 / 2)$

Shall I use an indicator for precision of unmerged data, or of merged data?

It is essential to understand the difference between the two types, but you don't find this in the papers / textbooks!

Indicators for precision of unmerged data help to e.g.

* decide between spacegroups
* calculate amount of radiation damage (see XDS tutorial)

Indicators for precision of merged data assess suitability * for downstream calculations (MR, phasing, refinement)

Crystallographic statistics - which indicators are being used?

- Data R-values: $R_{\text {pim }}<R_{\text {merge }}=R_{\text {sym }}<R_{\text {meas }}$

- I/ס (for unmerged or merged data !)
- $\mathrm{CC}_{1 / 2}$ and $\mathrm{CC}_{\text {anom }}$ for the merged data

Decisions and compromises

Which high-resolution cutoff for refinement?

Higher resolution means better accuracy and maps
But: high resolution yields high $\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}$!

Which datasets/frames to include into scaling?
Reject negative observations or unique reflections?
The reason why it is difficult to answer "R-value questions" is that no proper mathematical theory exists that uses absolute differences; concerning the use of R-values, Crystallography is disconnected from mainstream Statistics

Conflicting views

„An appropriate choice of resolution cutoff is difficult and sometimes seems to be performed mainly to satisfy referees ... Ideally, we would determine the point at which adding the next shell of data is not adding any statistically significant information ... $R_{\text {merge }}$ is not a very useful criterion."
P. Evans (2011) An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Cryst. D67, 282
"At the highest resolution shell, the $R_{\text {merge }}$ can be allowed to reach 30$40 \%$ for low-symmetry crystals and up to 60\% for high-symmetry crystals, since in the latter case the redundancy is usually higher."
A. Wlodawer, W. Minor, Z. Dauter and M. Jaskolski (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J. 275, 1
"... the accepted resolution limit is where the I/sigl falls below about 2.0. $R_{\text {merge }}$ may then reach 20-40\%, depending on the symmetry and redundancy." Z. Dauter (1999) Data-collection strategies. Acta Cryst D55, 1703

2010 PDB depositions

High resolution shell $R_{\text {merge }}$

Improper crystallographic reasoning

- typical example: data to 2.0 Å resolution - using all data: $\mathrm{R}_{\text {work }}=19 \%, \mathrm{R}_{\text {free }}=24 \%$ (overall)
- cut at $2.2 \AA$ resolution: $R_{\text {work }}=17 \%, R_{\text {free }}=23 \%$
- „cutting at $2.2 \AA$ is better because it gives lower R-values"

Proper crystallographic reasoning

1. Better data allow to obtain a better model
2. A better model has a lower $R_{\text {free }}$, and a lower $R_{\text {free }}-R_{\text {work }}$ gap
3. Comparison of model R-values is only meaningful when using the same data
4. Taken together, this leads to the „paired refinement technique": compare models in terms of their R -values against the same data.

Example: Cysteine DiOxygenase (CDO; PDB 3ELN) re-refined against 15-fold weaker data

Is there information beyond the conservative hi-res cutoff?

"Paired refinement technique":

- refine at (e.g.) $2.0 \AA$ and at $1.9 \AA$ using the same starting model and refinement parameters
- since it is meaningless to compare Rvalues at different resolutions, calculate the overall R-values of the $1.9 \AA$ model at $2.0 \AA$ (main.number_of_macro_cycles=1 strategy=None fix_rotamers=False ordered_solvent=False)
- $\Delta R=R_{1.9} \overline{(2.0)}-R_{2.0}(2.0)$

Measuring the precision of merged data with a correlation coefficient

- Correlation coefficient has clear meaning and well-known statistical properties
- Significance of its value can be assessed by Student's ttest
(e.g. $C C>0.3$ is significant at $p=0.01$ for $n>100 ; C C>0.08$ is significant at $p=0.01$ for $n>1000$)
- Apply this idea to crystallographic intensity data: use "random half-datasets" $\rightarrow \mathrm{CC}_{1 / 2} \quad$ (called CC_Imean by SCALA/aimless, now $\mathrm{CC}_{1 / 2}$)
- From $\mathrm{CC}_{1 / 2}$, we can analytically estimate CC of the merged dataset against the true (usually unmeasurable) intensities using

$$
C C^{*}=\sqrt{\frac{2 C C_{1 / 2}}{1+C C_{1 / 2}}}
$$

- (Karplus and Diederichs (2012) Science 336, 1030)

Data CCs

$\mathrm{CC}_{1 / 2}$ CC* Δ

I/sigma

Model CCs

- We can define $\mathrm{CC}_{\text {work }}, \mathrm{CC}_{\text {free }}$ as CCs calculated on $\mathrm{F}_{\text {calc }}{ }^{2}$ of the working and free set, against the experimental data
- $\mathrm{CC}_{\text {work }}$ and $\mathrm{CC}_{\text {free }}$ can be directly compared with CC^{*}

- CC*

Dashes: $\mathrm{CC}_{\text {work }}$, $C_{\text {free }}$ against weak exp'tl data

Dots: $\mathrm{CC}_{\text {work }}$, $C C_{\text {free }}^{\prime}$ against strong 3ELN data

Four new concepts for improving crystallographic procedures

Summary

- To predict suitability of data for downstream calculations (phasing, MR, refinement), we should use indicators of merged data precision
- $\mathrm{R}_{\text {merge }}$ should no longer be considered as useful for deciding e.g. on a high-resolution cutoff, or on which datasets to merge, or how large total rotation
- I/ σ has two drawbacks: programs do not agree on σ, and its value can only rise with multiplicity
- $\mathrm{CC}_{1 / 2}$ is well understood, reproducible, and directly links to model quality indicators

References

P.A. Karplus and K. Diederichs (2012) Linking Crystallographic Data with Model Quality. Science 336, 1030-1033. see also: P.R. Evans (2012) Resolving Some Old Problems in Protein Crystallography. Science 336, 986-987.
K. Diederichs and P.A. Karplus (2013) Better models by discarding data? Acta Cryst. D69, 1215-1222.
P. R. Evans and G. N. Murshudov (2013) How good are my data and what is the resolution? Acta Cryst. D69, 1204-1214.
Z. Luo, K. Rajashankar and Z. Dauter (2014) Weak data do not make a free lunch, only a cheap meal. Acta Cryst. D70, 253-260 .
J. Wang and R. A. Wing (2014) Diamonds in the rough: a strong case for the inclusion of weak-intensity X-ray diffraction data. Acta Cryst. D70, 1491-1497.
Diederichs K, "Crystallographic data and model quality" in Nucleic Acids Crystallography. (Ed. E Ennifar), Methods in Molecular Biology (in press).

[^0]: © Garland Science 2010 B. Rupp, Biomolecular Crystallography Accuracy - how close to the true value? Precision - how close are measurements? ${ }_{8}$

