XDS package and related tools for X-ray data processing

Keitaro Yamashita RIKEN SPring-8 Center

2014-05-26 ACA Blackboard Sessions: Data Processing With The Pros

SPring-8 campus

Imagery @2014 TerraMetrics, Map data @2014 Google, SK pl

Contents

- Introduction of *XDS*
 - Features, algorithms, source of information, and concepts
- Data processing example
 - Thaumatin dataset by 'shutterless' data collection

XDS

- Developed by Wolfgang Kabsch (MPI Heidelberg) in 1986.
- Kay Diederichs (University of Konstanz) joined in 2007.
- I (Keitaro Yamashita) am just a heavy user.
- Updates every 6 months.
- Closed source, but well documented.
- Integration by 3D profile fitting.
- Parallel processing with OpenMP or multiprocess.
- Recently, official GUI has been developed (XDSGUI).

Source of information

- Official website http://xds.mpimf-heidelberg.mpg.de/
 - download, documentation
- XDSwiki http://strucbio.biologie.uni-konstanz.de/xdswiki/
 - tips and tricks
 - tools (generate_XDS.INP, XDSGUI, etc.)
- CCP4BB

Profile fitting: 2D vs 3D

2D profile (MOSFLM, DENZO)

- Construct reflection profile on detector surface (2D)
- Each partial reflection is integrated and summed during scaling.

3D profile (*XDS, d*TREK*)

- Consider angular direction as well as detector surface (1+2D)
- Partial reflections are summed during integration.

How to use XDS?

- Prepare input file manually or by script and run xds
- Use GUI
 - XDSi, iXDS, XDSAPP, etc. (third-party)
 - XDSGUI (official)
- Use pipelines
 - *xia2* (CCP4)
 - *autoPROC* (GlobalPhasing Ltd.)
 - xdsme (Soleil)
 - autoxds (SSRL)
 - autoprocess (CMCF)
 - ..and so on.

XDS package and related tools

• XDS

the main program (indexing, integrating, scaling of single dataset).

• XSCALE

scaling multiple xds outputs, zero-dose extrapolation, statistics with arbitrary resolution binning.

• XDSCONV

converting xds output to other programs' format.

• XDSSTAT

additional statistics based on scaling result of xds (XDS_ASCII.HKL)

• *XDSGUI* Graphical User Interface for XDS. Plots during/after processing.

Data processing with XDS package

Single dataset

Multiple datasets (Multi-wavelengths, Multiple crystals)

Possible routes of XDS + Aimless

Data processing example

Thaumatin 'shutterless' dataset

- Kindly provided by Dr. K. Rajashankar (NE-CAT 24)
- Beamline: Advanced Photon Source 24-ID-C
- Detector: PILATUS 6M
- Oscillation ($\Delta \phi$): 0.2°/frame, continuous rotation
- Exposure: 0.2 s/frame
- Number of frames: 1,800 (360°)
- Wavelength: 1.2398 Å (10 keV)
- Camera distance: 250 mm

What is 'shutterless'?

Goniometer speed X-ray shutter Detector recording 0001.img 0002.img 0003.img time With-shutter data collection

- Slow.
- Goniometer/X-ray shutter synchronization error and shutter jitter may exist.

- Shutterless data collection
 - Fast.
 - No mechanical error.
 - Requires detector with ignorable readout time.

skipped in the talk

Fast detector enabled it!

PAD (pixel array detector) is one of the fast detectors.

- Fast readout (PILATUS 6M: 3 ms)
- Free from intrinsic/readout noise

Data collection with PAD

- Ideal for fine ϕ -slicing with shutterless continuous rotation
 - Better sampling of 3D reflection profile
 - Smaller background and better spot separation
 - Optimal $\Delta \phi$ is mosaicity/2 (Mueller, 2012)
- For the same S/N, one can expose less; therefore less radiation damage, higher multiplicity

First of all - inspect frames

Let's begin with XDSGUI

Click this button to run generate_XDS.INP script.

Then header of frame is read and ready-to-use XDS.INP is given in next "XDS.INP" tab.

In command line, one should do:

	\$ generate	e_XDS.INP	<pre>' "/data/frms/mydata_1_???.img"</pre>
XDSGUI from 2014-03-19 15:00 running	g in /home/yam/work/ACA_201	L4_xds/ACA_Thaumatin_shu	utterless/xdsgui _ 🗆 🗙
ects Frame XDS.INP XYCORR INIT COLSPOT	IDXREF DEFPIX INTEGRATE	CORRECT TOOLS XDSSTAT	XDSCONV XSCALE
Load [shutterless/thaum15_0.2d_0.2s_1_0001	1.cbf previous	next Pixel 1	Value:
generate XDS.INP	Untrusted areas (set with	right mouse button) O	value= 0 x= 797, y= -235
		Bright	tness
		Zoom	
			15

XDS.INP

- the input file for XDS run (xds & xds_par).
- As XDS does not see most image header, all needed information for data processing should be written in XDS.INP.
- Different name is not allowed (XDS automatically reads XDS.INP in the working directory).

XDS steps (JOB)

XYCORR

Correction of detector surface distortion and parallax

INIT

Initial background estimation

Peak search for indexing

IDXREF

Indexing (determine unit cell dimension and orientation)

Determination of the detector region for integration

INTEGRATE

Integration by 3D profile fitting Polarization correction (Assuming unpolarized beam)

Empirical corrections (DECAY, MODULATION, ABSORP) Non-empirical corrections (polarization, air/sensor absorption) Rejection, Merging statistics.

XDS JOBs and related files JOB name *Job*.LP (logfile) is not shown here, but written for every job. File needed by each JOB. File supplied for inspection by user. **XPLAN** G[XY]-[XY]cbf cbf XPARM.XDS GXPARM.XDS chf REMOVE SPOT.XDS HKL DEFPIX INTEGRATE CORRECT INIT COLSPOT IDXREF MODPIX.cbf INTEGRATE BKGPIX.cbf HKI BKGINIT.cbf ABS.cbf FRAME.cbf ABSORP.cbf DECAY.cbf BLANK.cbf XDS_ASCII. GAIN.cbf

analyzed by XDSSTAT.

XYCORR

18

skipped in the talk

'Checkpoints' in data processing

COLSPOT

Spot positions? (FRAME.cbf)

How many lattices? rmsd between observed and calculated positions? If not correctly indexed, check beam center, refined parameters, ...

Masked region (e.g. beamstop shadow) looks ok? (BKGPIX.cbf)

Predictions (FRAME.cbf) encircle the actual spots? Refinement is stable? Mosaicity and beam divergence looks reasonable? (INTEGRATE.LP)

ISa? Statistics? (CORRECT.LP) *R*_{meas} by frame? *R*_d by framediff? (by XDSSTAT) *R*_{meas} on detector surface? (by XDSSTAT)

IDXREF

- Read spot coordinates (x, y, frame number) and determine unit cell dimension and orientation by vector-clustering method.
- All necessary geometric information for INTEGRATE is written as XPARM.XDS.
- Based on my experience, the most important and difficult step (for non-good data).
- If failed, try:
 - change SPOT_RANGE= to change frames for indexing.
 - change REFINE(IDXREF)=.
 - check if beam center (ORGX=,ORGY=) is correct.
 - specify space group and unit cell if known.
 - change peak search parameter and re-run COLSPOT.

skipped in the talk

XPARM.XDS (March 30, 2013~)

INTEGRATE

INTEGRATE.LP

PROCESSING OF IMAGES

1 ...

* * * * * * * * * * * * * *

25

USING 8 PROCESSORS

*** DEFINITION OF SYMBOLS ***

IER = ERROR CODE AFTER ACCESSING DATA IMAGE

- 0: NO ERROR
- -1: CANNOT OPEN OR READ IMAGE FILE
- -3: WRONG DATA FORMAT
- SCALE = SCALING FACTOR FOR THIS DATA IMAGE
- NBKG = NUMBER OF BACKGROUND PIXELS ON DATA IMAGE
- NOVL = NUMBER OF OVERLOADED REFLECTIONS ON DATA IMAGE
- NEWALD = NUMBER OF REFLECTIONS CLOSE TO THE EWALD SPHERE
- NSTRONG = NUMBER OF STRONG REFLECTIONS ON DATA IMAGE
- NREJ = NUMBER OF UNEXPECTED REFLECTIONS
- SIGMAB = BEAM_DIVERGENCE_E.S.D.=SIGMAB
- SIGMAR = REFLECTING_RANGE_E.S.D.=SIGMAR (MOSAICITY)

Process block of frames defined by $DELPHI = (5^{\circ} by default)$ at a time.

* * * * * * * * * * * * *

If too large (~2 or more), usually integration is going wrong way. Check if experimental geometry is correct and retry indexing.

IMAGE	IER	SCALE	NBKG	NOVL	NEWALD	NSTRONG	NREJ	SIGMAB	SIGMAR
1	0	1.203	5305465	0	2651	390	1	0.0247	0.0933
2	0	1.204	5306652	0	2647	409	0	0.0256	0.1101
3	0	1.209	5304717	0	2707	400	2	0.0252	0.1009
4	0	1.208	5303456	0	2728	416	1	0.0257	0.0929
5	0	1.208	5301649	0	2677	407	3	0.0261	0.0877
6	0	1.212	5306367	0	2633	371	5	0.0254	0.1013
7	0	1.212	5308069	0	2632	366	1	0.0260	0.0925
8	0	1.212	5306555	0	2558	388	1	0.0250	0.0923
9	0	1.215	5303601	0	2618	419	4	0.0247	0.0933
10	0	1.217	5301791	0	2637	400	1	0.0257	0.1058

SIGMAB (spot spread) and SIGMAR (mosaicity) estimated for each frame.

INTEGRATE - check plots!

ence of DETECTOR COORDINATES (PIXELS) OF DIRECT

INTEGRATE - check predictions!

To see predictions of the last frame: check FRAME.cbf

Spots must be enclosed!

To see predictions of arbitrary frame: use TOOLS tab.

CORRECT - check symmetry and cell

In CORRECT.LP

THE DATA COLLECTION STATISTICS REPORTED BELOW ASSUMES: SPACE_GROUP_NUMBER= 21 UNIT_CELL_CONSTANTS= 81.75 81.79 150.02 90.000 90.000 90.000

Let pointless determine the symmetry..

\$ pointless INTEGRATE.HKL

Nelmt	Lklhd	Z-cc	CC	N	Rmeas	s Symmetry & operator (in Lattice Cell)
1	0.955	9.82	0.98	577843	0.062	2 identity
2	0.951	9.69	0.97	506629	0.087	7 *** 2-fold l (0 0 1) {-h,-k,l}
3	0.949	9.65	0.96	514180	0.112	2 *** 2-fold k (0 1 0) {-h,k,-l}
4	0.951	9.69	0.97	502669	0.091	1 *** 2-fold h (1 0 0) {h,-k,-l}
5	0.953	9.75	0.98	503575	0.081	1 *** 2-fold (1-1 0) {-k,-h,-l}
6	0.955	9.84	0.98	505544	0.068	8 *** 2-fold (1 1 0) {k,h,-l}
7	0.949	9.65	0.96	1012994	0.109	9 *** 4-fold l (0 0 1) {-k,h,l}{k,-h,l}
• • • •						
Best S	Solution	: spa	ace gr	oup P 41	21 2	
Un	it cell:	57.8	257.	83 15	0	90.02 90 90.01

(with very clear systematic absences)

Edit XDS.INP and run CORRECT again..

JOB= CORRECT					
SPACE_GROUP_NUMBER= 92					
UNIT_CELL_CONSTANTS= 57.82	57.83	150	90.02	90	90.01

skipped in the talk

CORRECT - check the table.

Computed for reflections with merged $\langle I/\sigma(I) \rangle \ge -3$, which are used in downstream analysis.

completeness (= UNIQUE / POSSIBLE)					so-called	R-merge	redundancy-independent R-merge (More important than R-merge)						
CUDCER OF INTENCIAL DARA NITHI CICNAL (NOICE >= 2 (AC					C FUNCTION	OF DECOLI	ΙΨΤΟΝ				Importa	ant if ano	maious
RESOLUTION	INIENSIII L	R OF REFL	ECTIONS	COMPLETENESS	R-FACTOR	R-FACTOR	COMPARED	I/SIGMA	R-meas	CC(1/2)	Anomal	SigAno	Nano
LIMIT	OBSERVED	UNIQUE	POSSIBLE	OF DATA	observed	expected					Corr		
4.66	37203	2618	2619	100.0%	2.1%	2.0%	37203	116.39	2.1%	100.0*	79*	2.349	1025
3.30	64510	4697	4697	100.0%	2.1%	2.1%	64510	114.29	2.2%	100.0*	52*	1.470	2059
2.70	83826	6100	6100	100.0%	2.6%	2.5%	83826	90.39	2.7%	100.0*	47*	1.323	2758
2.34	99370	7147	7147	100.0%	3.2%	3.2%	99370	70.82	3.4%	100.0*	36*	1.196	3285
2.09	112368	8176	8176	100.0%	3.7%	3.7%	112368	61.32	3.8%	100.0*	32*	1.112	3797
1.91	121901	9032	9032	100.0%	4.5%	4.6%	121900	48.31	4.7%	99.9*	26*	1.059	4219
1.77	132580	9786	9786	100.0%	6.0%	6.2%	132580	35.62	6.2%	99.9*	20*	0.962	4605
1.65	86622	10516	10520	100.0%	7.5%	7.9%	86603	20.78	8.0%	99.7*	8	0.846	4953
1.56	35105	9335	11233	83.1%	8.4%	9.0%	34016	10.93	9.7%	99.1*	4	0.777	3005
total	773485	67407	69310	97.3%	3.1%	3.1%	772376	52.01	3.2%	100.0*	23*	1.099	29706

NUMBER	OF	REFLECTIONS IN SELECTED SUBSET OF IMAGES	779713	
NUMBER	OF	REJECTED MISFITS	5877	
NUMBER	OF	SYSTEMATIC ABSENT REFLECTIONS	351	
NUMBER	OF	ACCEPTED OBSERVATIONS	773485	
NUMBER	OF	UNIQUE ACCEPTED REFLECTIONS	67407	

The reason why this number is different from that in table is because this number includes reflections with merged $\langle I/\sigma(I) \rangle < -3$. We should look at the table.

 $\langle I/\sigma(I)
angle$ for merged intensity

* If FRIEDEL'S_LAW=FALSE, Friedel pair is treated as different reflections. Otherwise, treated as unique reflections. skipped in the talk

CORRECT - check ISa

Error model of XDS

$$\sigma^2(I_{hl}) = a \left[\sigma_0^2(I_{hl}) + b \cdot I_{hl}^2 \right]$$

 $\sigma(I_{hl})$ of each observation is adjusted with two global parameters *a*, *b* - such that the observed spread of intensities of symmetry-related reflections on average matches their variances.

XDSSTAT gives further information

for example,

S-SAD phasing trial

More information

- See XDSwiki articles about
 - Thaumatin (this talk)
 - Trypsin S-SAD
 - Trypsin inhibitor (Hard-to-identify Space Group)
 - Tough Spots
 - CagL (Possible Twinning)
- The slides of this talk can also be downloaded from ACA2014 article

Thank you for your interest!

If you had questions or comments on this talk, please contact me: k.yamashita [at] spring8.or.jp