2QVO.xds: Difference between revisions

Jump to navigation Jump to search
112 bytes added ,  14 March 2011
no edit summary
No edit summary
No edit summary
Line 73: Line 73:
  *  21        tP          7.3      53.5  53.5  41.2  90.1  90.1  90.3    0  1  0  0  0  0 -1  0 -1  0  0  0
  *  21        tP          7.3      53.5  53.5  41.2  90.1  90.1  90.3    0  1  0  0  0  0 -1  0 -1  0  0  0
     39        mC        249.8    114.5  41.2  53.5  90.1  90.3  69.0    1 -2  0  0  1  0  0  0  0  0  1  0
     39        mC        249.8    114.5  41.2  53.5  90.1  90.3  69.0    1 -2  0  0  1  0  0  0  0  0  1  0
indicating at most tetragonal symmetry, shortly after this calculates R-factors for these lattices:
indicating at most tetragonal symmetry. Below this table, CORRECT calculates R-factors for each of the lattices whose metric symmetry is compatible with the cell of the crystal (marked by * in the table above):
  SPACE-GROUP        UNIT CELL CONSTANTS            UNIQUE  Rmeas  COMPARED  LATTICE-
  SPACE-GROUP        UNIT CELL CONSTANTS            UNIQUE  Rmeas  COMPARED  LATTICE-
   NUMBER      a      b      c  alpha beta gamma                            CHARACTER
   NUMBER      a      b      c  alpha beta gamma                            CHARACTER
Line 380: Line 380:
so the density is better, but not much. Furthermore, we note in passing that the number of anomalous scatterers (5) matches the sum of 4 Met and 1 Cys in the sequence.
so the density is better, but not much. Furthermore, we note in passing that the number of anomalous scatterers (5) matches the sum of 4 Met and 1 Cys in the sequence.


==Going to the limits==
==Exploring the limits==


With dataset 2, I tried to use the first 270 frames and could indeed solve the structure using the above SHELXC/D/E approach (with WFAC1=1.5) - 85 residues in a single chain, with "CC for partial structure against native data =  47.51 %". It should be mentioned that I also tried this in November 2009, and it didn't work with the version of XDS available then!
With dataset 2, I tried to use the first 270 frames and could indeed solve the structure using the above SHELXC/D/E approach (with WFAC1=1.5) - 85 residues in a single chain, with "CC for partial structure against native data =  47.51 %". It should be mentioned that I also tried this in November 2009, and it didn't work with the version of XDS available then!


With 180 frames, it was possible to get a complete model by (twice) re-cycling the j.hat file to j_fa.res. '''This means that the structure can be automatically solved just from the first 180 frames of dataset 2!'''
With 180 frames, it was possible to get a complete model by (twice) re-cycling the j.hat file to j_fa.res. '''This means that the structure can be automatically solved just from the first 180 frames of dataset 2!'''
2,684

edits

Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu