CC1/2: Difference between revisions

Jump to navigation Jump to search
470 bytes added ,  7 April 2019
(weighted version of sigma-y formula)
Line 32: Line 32:
<math>\sigma^2_{\epsilon_w}=\sum^N_{i} \sigma^2_{\epsilon i\_w} / N </math>  
<math>\sigma^2_{\epsilon_w}=\sum^N_{i} \sigma^2_{\epsilon i\_w} / N </math>  


 
It should be noted that it is not straightforward to define the correct way to calculate a weighted variance (and the weighted variance of the mean). The formula <math>s^2_w =  \frac{n_{i}}{n_{i}-1} \cdot \left ( \frac{\sum^{n_{i}}_{j}w_{j,i} x^2_{j,i}}{\sum^{n_{i}}_{j}w_{j,i}} -\left ( \frac{ \sum^{n_{i}}_{j}w_{j,i}x_{j,i} }{\sum^{n_{i}}_{j}w_{j,i}}\right )^2 \right )</math> is also found at [https://www.itl.nist.gov/div898/software/dataplot/refman2/ch2/weightsd.pdf]


----
----
Line 46: Line 46:
<math>\overline{x}_{i_w} = \frac{\sum^n_{j} w_{j,i}  x_{j,i}} {\sum^n_{j}w_{j,i}}</math>:  
<math>\overline{x}_{i_w} = \frac{\sum^n_{j} w_{j,i}  x_{j,i}} {\sum^n_{j}w_{j,i}}</math>:  


<math>\sigma^2_{y_w} = \frac{1}{N-1} \cdot \left (\sum^N_{i} \overline{x}_{i_w}^2 - \frac{\left ( \sum^N_{i} \overline{x}_{i_w} \right )^2}{ N} \right ) </math>  
<math>\sigma^2_{y_w} = \frac{1}{N-1} \cdot \left (\sum^N_{i} \overline{x}_{i_w}^2 - \frac{\left ( \sum^N_{i} \overline{x}_{i_w} \right )^2}{ N} \right ) </math>
 


== Example ==
== Example ==
2,684

edits

Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu