CC1/2: Difference between revisions

Jump to navigation Jump to search
112 bytes removed ,  13 April 2019
Line 6: Line 6:
: <math>CC_{1/2}=\frac{\sigma^2_{\tau}}{\sigma^2_{\tau}+\sigma^2_{\epsilon}} =\frac{\sigma^2_{y}- \frac{1}{2}\sigma^2_{\epsilon}}{\sigma^2_{y}+ \frac{1}{2}\sigma^2_{\epsilon}} </math>
: <math>CC_{1/2}=\frac{\sigma^2_{\tau}}{\sigma^2_{\tau}+\sigma^2_{\epsilon}} =\frac{\sigma^2_{y}- \frac{1}{2}\sigma^2_{\epsilon}}{\sigma^2_{y}+ \frac{1}{2}\sigma^2_{\epsilon}} </math>


This requires calculation of <math>\sigma^2_{y} </math>, the variance of the average intensities across the unique reflections of a resolution shell, and <math>\sigma^2_{\epsilon} </math>, the average of all sample variances of the averaged (merged) intensities across all unique reflections of a resolution shell.  
This requires calculation of <math>\sigma^2_{y} </math>, the variance of the average intensities, and <math>\sigma^2_{\epsilon} </math>, the average of the variances of the averaged (merged) intensities.


== Method ==
== Method ==
2,684

edits

Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu