2QVO.xds: Difference between revisions

1,446 bytes added ,  8 November 2009
Line 27: Line 27:
  REFINE(CORRECT)=DISTANCE BEAM ORIENTATION CELL AXIS
  REFINE(CORRECT)=DISTANCE BEAM ORIENTATION CELL AXIS
  VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS= 6000 30000 !Used by DEFPIX for excluding shaded parts of the detector.
  VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS= 6000 30000 !Used by DEFPIX for excluding shaded parts of the detector.
  INCLUDE_RESOLUTION_RANGE=50.0 2.5 !Angstroem; used by DEFPIX,INTEGRATE,CORRECT
  INCLUDE_RESOLUTION_RANGE=50.0 0 !Angstroem; used by DEFPIX,INTEGRATE,CORRECT
  MINIMUM_ZETA=0.1 !Defines width of 'blind region' (XPLAN,INTEGRATE,CORRECT)
  MINIMUM_ZETA=0.1 !Defines width of 'blind region' (XPLAN,INTEGRATE,CORRECT)
  WFAC1=1.5  !This controls the number of rejected MISFITS in CORRECT; a larger value leads to fewer rejections.
  WFAC1=1.5  !This controls the number of rejected MISFITS in CORRECT; a larger value leads to fewer rejections.
  STRONG_PIXEL=6.0                              !used by: COLSPOT
  STRONG_PIXEL=6.0                              !used by: COLSPOT


The resulting output files are XYCORR.LP, INIT.LP, COLSPOT.LP, IDXREF.LP, DEFPIX.LP, INTEGRATE.LP and CORRECT.LP. Data files are XPARM.XDS (from IDXREF), GXPARM.XDS (from CORRECT), and the *.cbf files all of which can be downloaded from [[Media:Xds_2qvo.tar.bz2.png|here]].
The resulting output files are XYCORR.LP, INIT.LP, COLSPOT.LP, IDXREF.LP, DEFPIX.LP, INTEGRATE.LP and CORRECT.LP. Data files are XPARM.XDS (from IDXREF), and the XDS_ASCII.HKL file all of which can be downloaded from [[Media:Xds_2qvo.tar.bz2.png|here]].
 
==SHELXC/D/E structure solution==
generate XDSCONV.INP (a trick is to use MERGE=TRUE, for some reason the results are better that way) and run xdsconv and shelxc:
 
  #!/bin/csh -f
cat > XDSCONV.INP <<end
INPUT_FILE=../XDS_ASCII.HKL
OUTPUT_FILE=temp.hkl SHELX
MERGE=TRUE
FRIEDEL'S_LAW=FALSE
end
xdsconv
shelxc j <<end
SAD  temp.hkl
CELL 53.10 53.10 40.90 90 90 90
SPAG P42
MAXM 2
end
This writes j_fa.ins, j.hkl, j_fa.hkl . However, we overwrite j.ins now:
cat > j_fa.ins <<end
TITL j_fa.ins SAD in P42
CELL  0.98000  53.10  53.10  40.90  90.00  90.00  90.00
LATT  -1
SYMM -Y, X, 1/2+Z
SYMM -X, -Y, Z
SYMM Y, -X, 1/2+Z
SFAC S
UNIT  128
SHEL 999 3.0
FIND 3
NTRY 100
MIND -1.0 2.2
ESEL 1.3
TEST 0 99
SEED 1
PATS
HKLF 3
END
end
shelxd j_fa
 
This gives best CC All/Weak of 35.61 / 26.03 . Next we run G. Sheldrick's beta-Version of shelxe Version 2009/4:
 
shelxe.beta -a6 -q j j_fa -h -s0.55 -m20 -b
 
Some important lines in the output:
    79 residues left after pruning, divided into chains as follows:
A:  20  B:  22  C:  37
CC for partial structure against native data =  50.42 %
  <wt> = 0.300, Contrast = 0.731, Connect. = 0.817 for dens.mod. cycle 20
  Estimated mean FOM = 0.659  Pseudo-free CC = 68.71 %
'''clearly indicating that the structure is solved.'''
 
For completeness, we run the inverse hand:
 
shelxe.beta -a6 -q j j_fa -h -s0.55 -m20 -b -i
 
but of course this gives much worse statistics.
2,684

edits