CC1/2: Difference between revisions

From XDSwiki
Jump to navigation Jump to search
No edit summary
Line 10: Line 10:
== why CC<sub>1/2</sub> can be negative ==
== why CC<sub>1/2</sub> can be negative ==
There is a mathematical reason, explained in §4.1 of [https://cms.uni-konstanz.de/index.php?eID=tx_nawsecuredl&u=0&g=0&t=1475179096&hash=5cf64234a23a794a1894c5408384c57208d7b602&file=fileadmin/biologie/ag-strucbio/pdfs/Assman2016_JApplCryst.pdf Assmann, G., Brehm, W. and Diederichs, K. (2016) Identification of rogue datasets in serial crystallography (2016) J. Appl. Cryst. 49, 1021-1028.]
There is a mathematical reason, explained in §4.1 of [https://cms.uni-konstanz.de/index.php?eID=tx_nawsecuredl&u=0&g=0&t=1475179096&hash=5cf64234a23a794a1894c5408384c57208d7b602&file=fileadmin/biologie/ag-strucbio/pdfs/Assman2016_JApplCryst.pdf Assmann, G., Brehm, W. and Diederichs, K. (2016) Identification of rogue datasets in serial crystallography (2016) J. Appl. Cryst. 49, 1021-1028.]
==CC<sub>1/2</sub> calculation==
CC12 is calculated by:
: <math>CC_{1/2}=\frac{\sigma^2_{\tau}}{\sigma^2_{\tau}+\sigma^2_{\epsilon}} =\frac{\sigma^2_{y}- \frac{1}{2}\sigma^2_{\epsilon}}{\sigma^2_{y}+ \frac{1}{2}\sigma^2_{\epsilon}} </math>
This requires calculation of <math>\sigma^2_{y} </math>, the variance of the average intensities across the unique reflections of a resolution shell, and <math>\sigma^2_{\epsilon} </math>, the average of all sample variances of the mean across all unique reflections of a resolution shell.
== Implementation ==
===''' <math>\sigma^2_{\epsilon} </math>''' - unweighted===
The average of all sample variances of the mean across all unique reflections of a resolution shell is obtained by calculating the sample variance of the mean for every unique reflection i by:
<math>\sigma^2_{\epsilon i} =  \frac{1}{n-1} \cdot \left ( \sum^n_{j} x^2_{j} - \frac{\left ( \sum^n_{j}x_{j} \right )^2}{ n} \right )    / \frac{n}{2} </math>
With <math>x_{j} </math> , a single observation j of all observations n of one reflection i. <math>\sigma^2_{\epsilon i} </math> is then divided by the factor  <math>\frac{n}{2} </math>, because the variance of the sample mean (the merged observations) is the quantity of interest. The division by n/2 takes care of providing the variance of the mean (merged) intensity of the half-datasets, as defined in [https://en.wikipedia.org/wiki/Sample_mean_and_covariance#Variance_of_the_sample_mean ]. These "variances of means" are averaged over all unique reflections of the resolution shell:
<math>\sum^N_{i} \sigma^2_{\epsilon i} / N </math>
----
===''' <math>\sigma^2_{y} </math>'''===
The unbiased sample variance from all averaged intensities of all unique reflections is calculated by:
<math>\sigma^2_{y} = \frac{1}{N-1} \cdot \left ( \sum^N_{i} \overline{x}^2 - \frac{\left ( \sum^N_{i} \overline{x} \right )^2}{ N} \right ) </math>
With <math>\overline{x}= \sum^n_{j} x_{j}</math> , average intensity of all observations from all frames/crystals of one unique reflection i. This is done for all reflections N in a resolution shell.
== Example ==
An example is shown for a very simplified data file (unmerged ASCII.HKL). Only two frames/crystals are looked at and the diffraction pattern also consists only of two unique reflections with each three observations for every unique reflection.
<pre>
First reflection with 6 observations:
    h    k    l      int    σ(int)  #datset
    2    0    0  9.156E+02  3.686E+00  1
    0    2    0  5.584E+02  3.093E+00  1
    0    0    2  6.301E+02  2.405E+01  1 
    2    0    0  9.256E+02  3.686E+00  2
    0    2    0  2.584E+02  3.093E+00  2
    0    0    2  7.301E+02  2.405E+01  2
</pre>
<math>x_{i} </math> , the average intensity of all observations from all frames/crystals of this reflection = 669.6999
<math>\sigma^2_{\epsilon i} </math>, the unbiased sample variance of the mean of all observations of this unique reflection i = 20848.2198 (62544.6597/(n/2))
<pre>
Second reflection with 6 observations:
    h    k    l      int    σ(int)  #datset
    1    1    2  2.395E+01  8.932E+01  1 
    1    2    1  9.065E+01  7.407E+00  1 
    2    1    1  5.981E+01  9.125E+00  1 
    1    1    2  3.395E+01  8.932E+01  2 
    1    2    1  9.065E+01  7.407E+00  2 
    2    1    1  1.608E+01  2.215E+01  2 
</pre>
<math>x_{i} </math> , the average intensity of all observations from all frames/crystals of this reflection = 52.5150
<math>\sigma^2_{\epsilon i} </math>, the unbiased sample variance of the mean of all observations of this unique reflection i = 363.3267 (1089.9803/(n/2))
<math>\sigma^2_{\epsilon} </math> , the average of all the <math>\sigma^2_{\epsilon i} </math> = 10605.7733
<math>\sigma^2_{y} </math>, the variance of all the averaged intensities = 190458.6533
As a result of these calculations CC12 =

Revision as of 15:00, 5 September 2018

number of reflection pairs

CORRECT.LP and XSCALE.LP do not explicitly state the number of reflection pairs that were used to calculated CC1/2.

However, the number can be calculated from the numbers available, for each resolution shell: there is the NUMBER OF UNIQUE REFLECTIONS (X), the NUMBER OF OBSERVED REFLECTIONS (Y), and the number of COMPARED reflections (Z) - the latter number is the total number of unmerged observations that contributed to the CC1/2 and the R-value calculations.

The number of reflections pairs that were used for the CC1/2 calculation can therefore be obtained as follows: Y-Z gives the number of unique reflections that have a single observation. The remaining (X-Y+Z) unique reflections have multiple observations, i.e. there were (X-Y+Z) reflection pairs that went into CC1/2.


why CC1/2 can be negative

There is a mathematical reason, explained in §4.1 of Assmann, G., Brehm, W. and Diederichs, K. (2016) Identification of rogue datasets in serial crystallography (2016) J. Appl. Cryst. 49, 1021-1028.


CC1/2 calculation

CC12 is calculated by:

[math]\displaystyle{ CC_{1/2}=\frac{\sigma^2_{\tau}}{\sigma^2_{\tau}+\sigma^2_{\epsilon}} =\frac{\sigma^2_{y}- \frac{1}{2}\sigma^2_{\epsilon}}{\sigma^2_{y}+ \frac{1}{2}\sigma^2_{\epsilon}} }[/math]

This requires calculation of [math]\displaystyle{ \sigma^2_{y} }[/math], the variance of the average intensities across the unique reflections of a resolution shell, and [math]\displaystyle{ \sigma^2_{\epsilon} }[/math], the average of all sample variances of the mean across all unique reflections of a resolution shell.

Implementation

[math]\displaystyle{ \sigma^2_{\epsilon} }[/math] - unweighted

The average of all sample variances of the mean across all unique reflections of a resolution shell is obtained by calculating the sample variance of the mean for every unique reflection i by:

[math]\displaystyle{ \sigma^2_{\epsilon i} = \frac{1}{n-1} \cdot \left ( \sum^n_{j} x^2_{j} - \frac{\left ( \sum^n_{j}x_{j} \right )^2}{ n} \right ) / \frac{n}{2} }[/math]

With [math]\displaystyle{ x_{j} }[/math] , a single observation j of all observations n of one reflection i. [math]\displaystyle{ \sigma^2_{\epsilon i} }[/math] is then divided by the factor [math]\displaystyle{ \frac{n}{2} }[/math], because the variance of the sample mean (the merged observations) is the quantity of interest. The division by n/2 takes care of providing the variance of the mean (merged) intensity of the half-datasets, as defined in [1]. These "variances of means" are averaged over all unique reflections of the resolution shell:

[math]\displaystyle{ \sum^N_{i} \sigma^2_{\epsilon i} / N }[/math]



[math]\displaystyle{ \sigma^2_{y} }[/math]

The unbiased sample variance from all averaged intensities of all unique reflections is calculated by:

[math]\displaystyle{ \sigma^2_{y} = \frac{1}{N-1} \cdot \left ( \sum^N_{i} \overline{x}^2 - \frac{\left ( \sum^N_{i} \overline{x} \right )^2}{ N} \right ) }[/math]

With [math]\displaystyle{ \overline{x}= \sum^n_{j} x_{j} }[/math] , average intensity of all observations from all frames/crystals of one unique reflection i. This is done for all reflections N in a resolution shell.


Example

An example is shown for a very simplified data file (unmerged ASCII.HKL). Only two frames/crystals are looked at and the diffraction pattern also consists only of two unique reflections with each three observations for every unique reflection.

First reflection with 6 observations:
     h     k     l       int     σ(int)  #datset
     2     0     0  9.156E+02  3.686E+00   1 
     0     2     0  5.584E+02  3.093E+00   1 
     0     0     2  6.301E+02  2.405E+01   1  
     2     0     0  9.256E+02  3.686E+00   2 
     0     2     0  2.584E+02  3.093E+00   2 
     0     0     2  7.301E+02  2.405E+01   2 

[math]\displaystyle{ x_{i} }[/math] , the average intensity of all observations from all frames/crystals of this reflection = 669.6999

[math]\displaystyle{ \sigma^2_{\epsilon i} }[/math], the unbiased sample variance of the mean of all observations of this unique reflection i = 20848.2198 (62544.6597/(n/2))


Second reflection with 6 observations:
     h     k     l       int     σ(int)  #datset
     1     1     2  2.395E+01  8.932E+01   1  
     1     2     1  9.065E+01  7.407E+00   1  
     2     1     1  5.981E+01  9.125E+00   1  
     1     1     2  3.395E+01  8.932E+01   2  
     1     2     1  9.065E+01  7.407E+00   2  
     2     1     1  1.608E+01  2.215E+01   2  

[math]\displaystyle{ x_{i} }[/math] , the average intensity of all observations from all frames/crystals of this reflection = 52.5150

[math]\displaystyle{ \sigma^2_{\epsilon i} }[/math], the unbiased sample variance of the mean of all observations of this unique reflection i = 363.3267 (1089.9803/(n/2))


[math]\displaystyle{ \sigma^2_{\epsilon} }[/math] , the average of all the [math]\displaystyle{ \sigma^2_{\epsilon i} }[/math] = 10605.7733

[math]\displaystyle{ \sigma^2_{y} }[/math], the variance of all the averaged intensities = 190458.6533

As a result of these calculations CC12 =