Space group determination: Difference between revisions

Line 108: Line 108:
The table is relevant because in particular twinning adds a symmetry type, and leads to an apparent space group which is the supergroup of the true space group.
The table is relevant because in particular twinning adds a symmetry type, and leads to an apparent space group which is the supergroup of the true space group.
{| cellpadding="10" cellspacing="0" border="1"  
{| cellpadding="10" cellspacing="0" border="1"  
! spacegroup
! spacegroup number
! maximum ''translationengleiche'' subgroup
! maximum ''translationengleiche'' subgroup
! minimum ''translationengleiche'' supergroup
! minimum ''translationengleiche'' supergroup
! name
! spacegroup name
|-
|-
|  1 ||-|| 3, 4, 5, 143, 144, 145, 146 || P 1
|  1 ||-|| 3, 4, 5, 143, 144, 145, 146 || P 1
2,684

edits