2,684
edits
Line 108: | Line 108: | ||
The table is relevant because in particular twinning adds a symmetry type, and leads to an apparent space group which is the supergroup of the true space group. | The table is relevant because in particular twinning adds a symmetry type, and leads to an apparent space group which is the supergroup of the true space group. | ||
{| cellpadding="10" cellspacing="0" border="1" | {| cellpadding="10" cellspacing="0" border="1" | ||
! spacegroup | ! spacegroup number | ||
! maximum ''translationengleiche'' subgroup | ! maximum ''translationengleiche'' subgroup | ||
! minimum ''translationengleiche'' supergroup | ! minimum ''translationengleiche'' supergroup | ||
! name | ! spacegroup name | ||
|- | |- | ||
| 1 ||-|| 3, 4, 5, 143, 144, 145, 146 || P 1 | | 1 ||-|| 3, 4, 5, 143, 144, 145, 146 || P 1 |