2,684
edits
mNo edit summary |
m (formatting) |
||
Line 34: | Line 34: | ||
xdscc12 ... > xdscc12.log # or xdscc12 ... | tee xdscc12.log | xdscc12 ... > xdscc12.log # or xdscc12 ... | tee xdscc12.log | ||
All statistics (tables) produced by XDSCC12 may be visualized with e.g. gnuplot, after grepping the relevant lines from the output. | All statistics (tables) produced by XDSCC12 may be visualized with e.g. gnuplot, after grepping the relevant lines from the output. | ||
If XDSCC12 is used with a XDS_ASCII.HKL reflection file (from XDS), the isomorphous delta-CC<sub>1/2</sub> of a batch of frames (width chosen with the -t option) relative to all data is most easily visualized via [[XDSGUI]] (Statistics tab). Negative numbers indicate a worsening of the overall signal. | If XDSCC12 is used with a XDS_ASCII.HKL reflection file (from XDS), the isomorphous delta-CC<sub>1/2</sub> of a batch of frames (width chosen with the <code>-t</code> option; typically <code>-t 1</code>) relative to all data is most easily visualized via [[XDSGUI]] (Statistics tab). Negative numbers indicate a worsening of the overall signal. | ||
If XDSCC12 is used with a XSCALE.HKL generated from multiple datasets, the output lines show the contribution of each dataset toward the total CC<sub>1/2</sub>. In this case, the program writes a file called XSCALE.INP.rename_me which shows statistics of delta-CC<sub>1/2</sub> and delta-CC<sub>1/2-ano</sub> values, and has a sorted enumeration of the INPUT_FILEs - the first of these provides the best data set, and the last one is the worst one. This XSCALE.INP.rename_me can then be edited (i.e. for deleting a few data sets with very negative delta-CC<sub>1/2</sub>), and renamed to XSCALE.INP. | If XDSCC12 is used with a XSCALE.HKL generated from multiple datasets, the output lines show the contribution of each dataset toward the total CC<sub>1/2</sub>. In this case, the program writes a file called XSCALE.INP.rename_me which shows statistics of delta-CC<sub>1/2</sub> and delta-CC<sub>1/2-ano</sub> values, and has a sorted enumeration of the INPUT_FILEs - the first of these provides the best data set, and the last one is the worst one. This XSCALE.INP.rename_me can then be edited (i.e. for deleting a few data sets with very negative delta-CC<sub>1/2</sub>), and renamed to XSCALE.INP. | ||
Statistics are given (in resolution shells) for the isomorphous and the anomalous signal. In case of [[SSX]] data (which have few reflections per data set, compared to complete data sets), we typically use | Statistics are given (in resolution shells) for the isomorphous and the anomalous signal. In case of [[SSX]] data (which have few reflections per data set, compared to complete data sets), we typically use <code>-nbin 1</code> as option. | ||
To find out about the influence of the ''a'' and ''b'' parameters of the XDS/XSCALE-adjusted error model, you may try the -w option; this assigns the same sigma to all reflections. Likewise, the [https://en.wikipedia.org/wiki/Fisher_transformation Fisher transformation], which serves to make changes in CC<sub>1/2</sub> comparable across resolution ranges, may be switched off for testing purposes, with the -z option. | To find out about the influence of the ''a'' and ''b'' parameters of the XDS/XSCALE-adjusted error model, you may try the <code>-w</code> option; this assigns the same sigma to all reflections. Likewise, the [https://en.wikipedia.org/wiki/Fisher_transformation Fisher transformation], which serves to make changes in CC<sub>1/2</sub> comparable across resolution ranges, may be switched off for testing purposes, with the -z option. | ||
== Example output with explanation == | == Example output with explanation == |