CC1/2: Difference between revisions
No edit summary |
|||
Line 7: | Line 7: | ||
The ''number of reflections pairs'' that were used for the CC<sub>1/2</sub> calculation can therefore be obtained as follows: Y-Z gives the number of unique reflections that have a single observation. The remaining (X-Y+Z) unique reflections have multiple observations, i.e. there were (X-Y+Z) reflection pairs that went into CC<sub>1/2</sub>. | The ''number of reflections pairs'' that were used for the CC<sub>1/2</sub> calculation can therefore be obtained as follows: Y-Z gives the number of unique reflections that have a single observation. The remaining (X-Y+Z) unique reflections have multiple observations, i.e. there were (X-Y+Z) reflection pairs that went into CC<sub>1/2</sub>. | ||
== why CC<sub>1/2</sub> can be negative == | == why CC<sub>1/2</sub> can be negative == | ||
There is a mathematical reason, explained in §4.1 of [https://cms.uni-konstanz.de/index.php?eID=tx_nawsecuredl&u=0&g=0&t=1475179096&hash=5cf64234a23a794a1894c5408384c57208d7b602&file=fileadmin/biologie/ag-strucbio/pdfs/Assman2016_JApplCryst.pdf Assmann, G., Brehm, W. and Diederichs, K. (2016) Identification of rogue datasets in serial crystallography (2016) J. Appl. Cryst. 49, 1021-1028.] | There is a mathematical reason, explained in §4.1 of [https://cms.uni-konstanz.de/index.php?eID=tx_nawsecuredl&u=0&g=0&t=1475179096&hash=5cf64234a23a794a1894c5408384c57208d7b602&file=fileadmin/biologie/ag-strucbio/pdfs/Assman2016_JApplCryst.pdf Assmann, G., Brehm, W. and Diederichs, K. (2016) Identification of rogue datasets in serial crystallography (2016) J. Appl. Cryst. 49, 1021-1028.] |
Revision as of 10:54, 31 March 2018
number of reflection pairs
CORRECT.LP and XSCALE.LP do not explicitly state the number of reflection pairs that were used to calculated CC1/2.
However, the number can be calculated from the numbers available, for each resolution shell: there is the NUMBER OF UNIQUE REFLECTIONS (X), the NUMBER OF OBSERVED REFLECTIONS (Y), and the number of COMPARED reflections (Z) - the latter number is the total number of unmerged observations that contributed to the CC1/2 and the R-value calculations.
The number of reflections pairs that were used for the CC1/2 calculation can therefore be obtained as follows: Y-Z gives the number of unique reflections that have a single observation. The remaining (X-Y+Z) unique reflections have multiple observations, i.e. there were (X-Y+Z) reflection pairs that went into CC1/2.
why CC1/2 can be negative
There is a mathematical reason, explained in §4.1 of Assmann, G., Brehm, W. and Diederichs, K. (2016) Identification of rogue datasets in serial crystallography (2016) J. Appl. Cryst. 49, 1021-1028.