Xdscc12

From XDSwiki
Revision as of 11:58, 13 April 2022 by Kay (talk | contribs) (some more explanation)
Jump to navigation Jump to search

XDSCC12 is a program for generating delta-CC1/2 and delta-CC1/2-ano values for XDS_ASCII.HKL (written by XDS), or for XSCALE.HKL (written by XSCALE) containing data from several files of type XDS_ASCII.HKL after scaling (with MERGE=FALSE).

It implements the method described in Assmann, Brehm and Diederichs (2016) Identification of rogue datasets in serial crystallography. J. Appl. Cryst. 49, 1021 [1], and it does this not only for the individual datasets in XSCALE.HKL, but also for individual frames, or groups (batches) of frames, of a single dataset collected with the rotation method and processed by XDS.

The program can be downloaded for Linux or Mac.

Usage (this text can be obtained with xdscc12 -h):

xdscc12 KD 2019-04-30. Academic use only; no redistribution. -h option shows options.
Please cite Assmann, G., Brehm, W., Diederichs, K. (2016) J.Appl.Cryst. 49, 1021-1028
running 'xdscc12 -h' on 20190502 at 16:11:46 +0200
usage: xdscc12 [-dmin <lowres>] [-dmax <highres>] [-nbin <nbin>] [-mode <1 or 2>] [-<abcdefstwz>] [-r <ref>] FILE_NAME
dmin (default 999A), dmax (default 1A) and nbin (default 10) have the usual meanings.
mode can be 1 (equal volumes of resolution shells) or 2 (increasing volumes; default).
  -r: next parameter: ASCII reference file with lines: h,k,l,Fcalc or h,k,l,Fcalc+,Fcalc-
      this allows calculation of CC of isomorphous signal with reference
  -s: read two columns from reference: Fcalc(+), Fcalc(-). 
      this allows calculation of CC of anomalous signal with that of reference
  -t: total oscillation (degree) to batch fine-sliced frames into
 FILE_NAME can be XDS or XSCALE reflection file
 other options can be combined (e.g. -def), and switch the following OFF:
  -a: individual isomorphous summary values
  -b: individual (Fisher-transformed) delta-CC1/2 values
  -c: individual delta-CC1/2 reflection numbers
  -d: individual anomalous summary values
  -e: individual (Fisher-transformed) delta-CC1/2ano values
  -f: individual delta-CC1/2ano reflection numbers
  -w: weighting of intensities with their sigmas
  -z: Fisher transformation of delta-CC1/2 values

The program output in the terminal window is terse but supposed to be self-explanatory; it can (and most often should) be saved or re-directed to a file.

xdscc12 ... > xdscc12.log  #  or xdscc12 ... | tee xdscc12.log

All statistics (tables) produced by XDSCC12 may be visualized with e.g. gnuplot, after grepping the relevant lines from the output. If XDSCC12 is used with a XDS_ASCII.HKL reflection file (from XDS), the isomorphous delta-CC1/2 of a batch of frames (width chosen with the -t option; typically -t 1) relative to all data is most easily visualized via XDSGUI (Statistics tab). Negative numbers indicate a worsening of the overall signal.

If XDSCC12 is used with a XSCALE.HKL generated from multiple datasets, the output lines show the contribution of each dataset toward the total CC1/2. In this case, the program writes a file called XSCALE.INP.rename_me which shows statistics of delta-CC1/2 and delta-CC1/2-ano values, and has a sorted enumeration of the INPUT_FILEs - the first of these provides the best data set, and the last one is the worst one. This XSCALE.INP.rename_me can then be edited (i.e. for deleting a few data sets with very negative delta-CC1/2), and renamed to XSCALE.INP.

Overall statistics are reported in the lines starting with a and d for

  • only those unique reflections that are actually present in the batch of frame / batch / dataset. These values are in columns 3-6.
  • all unique reflections of the merged dataset (but a frame / batch / dataset may not have all unique reflections, so the "all" values report the mean influence). These values are in columns 7-10.

Typically, it is sensible to disregard the "all" values, and to base decisions on the "only" values, because the latter are not affected by the number of reflections of the particular frame / batch / dataset. The words "all" and "only" are used in this sense throughout the terminal and file output of XDSCC12.

Statistics for "only" the unique reflections of a frame / batch/ dataset are given in resolution shells for the isomorphous (in lines starting with b and c) and the anomalous signal (in lines starting with d and e). In case of SSX data (which have few reflections per data set, compared to complete data sets), we typically use -nbin 1 as option, to define only a single resolution shell.

To find out about the influence of the a and b parameters of the XDS/XSCALE-adjusted error model, you may try the -w option; this assigns the same sigma to all reflections. Likewise, the Fisher transformation, which serves to make changes in CC1/2 comparable across resolution ranges, may be switched off for testing purposes, with the -z option.

Example output

 xdscc12 KD 2020-12-9. Academic use only; no redistribution. -h option shows options.
 Please cite Assmann, G., Brehm, W., Diederichs, K. (2016) J.Appl.Cryst. 49, 1021-1028
  running 'xdscc12 temp.ahkl' on 20220413 at 12:13:53 +0200
  no option -w found, therefore statistics are weighted by sigma values
  no option -z found, therefore delta-CC1/2 values are Fisher-transformed
 
  reflection file is temp.ahkl
 !SPACE_GROUP_NUMBER=   19
 !UNIT_CELL_CONSTANTS=     38.30     79.10     79.10  90.000  90.000  90.000
  # of datasets=          20
  # obs (w/o misfits), unique, misfits =       51918       20213           0
  max and min resolution of data in file =   39.55000       1.801329    
  data between   39.55000      and   1.801329     A will be used
  10 resolution shells (for lines starting with b,c,e,f,r,s):
   5.644  4.011  3.281  2.844  2.545  2.324  2.152  2.013  1.899  1.801
  
  overall CC1/2:    83.328 nref=   14986 (but the overall CC1/2 is meaningless!)
  <CC1/2>:    44.468 (frequency-weighted average of CC1/2 in resolution shells)
  CC1/2 in resolution shells:
    91.4   81.0   72.0   68.4   42.1   41.4   32.4   29.0   33.2   28.2
  CC* in resolution shells:
    97.7   94.6   91.5   90.1   77.0   76.5   70.0   67.0   70.6   66.3
  frequency, i.e. number of unique reflections in resolution shells:
     493    887   1134   1345   1501   1649   1808   1921   2061   2187
 
  headings for lines starting with a,b,c:
 a:  <CC1/2> of each dataset:
 a:   reflections of this dataset only      reflections of all datasets
 a: set   nref    with without   delta     nref    with without   delta
 b: delta-CC1/2 in resolution shells
 c: # reflections for delta-CC1/2
 a      1   1241  61.936  42.634  26.227    14470  44.075  42.523   1.910
 b 61.432 27.680 8.094 2.942 41.231 44.296 26.090 10.996 30.482 30.456
 c     47     73     85    110    135    137    146    170    164    174
 a      2   1565  43.941  34.156  11.512    14350  44.978  44.104   1.091
 b 36.910 -5.982 -1.113 58.592 46.243 -24.157 -.234 20.068 11.307 -3.709
 c     49     90    126    134    158    168    196    203    216    225
 a      3   1754  39.551  29.634  11.233    14478  43.683  42.374   1.606
 b 13.559 11.752 17.587 17.093 16.730 19.779 3.638 20.348 6.182 4.113
 c     43    107    131    160    175    198    218    230    246    246
 a      4   1468  41.694  25.840  17.768    14382  44.801  43.256   1.917
 b -9.445 36.760 36.335 15.954 2.951 20.264 21.375 19.554 2.513 35.809
 c     30     93     99    115    164    174    202    220    188    183
 a      5   1412  41.785  39.193   3.100    14292  45.561  45.291   0.340
 b 21.421 1.775 7.645 1.361 6.005 22.513 11.859 -16.883 .973 -2.353
 c     41     68     82    111    144    173    176    190    210    217
 a      6   1363  49.626  42.827   8.634    14293  44.938  44.354   0.728
 b 32.175 53.390 25.822 21.623 -42.441 27.299 7.214 12.080 6.573 15.115
 c     43     84     99    120    147    161    173    183    166    187
 a      7   1686  48.062  37.817  12.521    14407  43.991  42.971   1.258
 b 11.830 -4.851 11.505 15.574 67.688 20.009 5.129 -7.014 8.766 1.024
 c     59    117    133    153    142    179    183    243    252    225
 a      8   1795  46.357  34.049  14.614    14433  44.757  43.282   1.829
 b 14.234 6.729 13.626 19.758 7.065 16.373 21.204 11.431 18.082 15.739
 c     57    103    137    183    168    202    205    240    237    263
 a      9   1483  50.778  46.558   5.526    14363  44.923  44.479   0.554
 b 40.845 .431 30.046 -7.049 -1.607 -2.724 -9.486 -.902 20.019 27.538
 c     46     88    119    135    154    161    193    192    203    192
 a     10   1332  38.220  34.823   3.918    14506  43.988  43.550   0.541
 b 33.078 34.752 9.425 25.010 -2.922 -14.118 14.600 12.844 1.512 -8.735
 c     51     77     93    118    123    154    166    172    181    197
 a     11   1477  45.163  38.543   8.015    14361  45.415  44.577   1.051
 b 9.914 8.880 2.467 18.150 5.381 11.874 4.743 29.698 14.834 -17.211
 c     65     82    111    133    115    159    174    202    220    216
 a     12   1654  45.251  30.457  17.159    14409  44.363  42.437   2.373
 b 28.681 6.430 -40.284 36.914 30.008 47.293 29.607 9.512 -1.455 21.488
 c     53    109    116    142    154    177    196    229    235    243
 a     13   1422  51.281  36.632  18.036    14302  44.261  42.742   1.872
 b 23.460 4.559 43.871 13.497 28.091 35.298 -1.493 17.764 17.226 19.655
 c     38     73    101    123    153    153    169    192    224    196
 a     14   1668  51.749  49.607   2.882    14441  44.642  44.527   0.145
 b 5.096 37.325 5.515 16.257 21.437 -7.901 14.955 4.960 -15.485 -2.206
 c     52    115    121    161    172    177    201    205    223    241
 a     15   1369  46.667  38.742   9.674    14263  44.480  43.770   0.882
 b -22.140 29.901 48.902 -7.002 26.620 .483 8.071 13.097 11.535 -5.181
 c     56     92    105    115    116    138    151    177    196    223
 a     16   1257  33.100  23.275  10.645    14291  44.849  43.826   1.273
 b -14.293 -.418 44.139 -1.828 30.203 21.053 5.098 22.834 -4.129 -.948
 c     34     60     57    120    133    127    159    188    199    180
 a     17   1370  42.421  39.259   3.794    14264  44.877  44.550   0.409
 b 30.851 -17.854 11.508 12.578 -18.416 2.277 20.934 12.146 -.761 .881
 c     33     72    106    131    134    151    157    189    197    200
 a     18   1269  45.248  26.342  21.465    14302  43.295  41.438   2.264
 b 23.189 2.571 31.364 37.883 60.830 25.784 13.345 33.459 -3.441 5.251
 c     45    101     97    111    127    143    144    164    168    169
 a     19   1644  43.200  43.114   0.105    14365  45.169  45.113   0.071
 b 23.714 13.389 29.752 38.784 -16.069 6.952 10.177 9.560 -19.196 -16.013
 c     56     87    132    138    168    179    183    215    236    250
 a     20   1615  54.027  42.202  15.317    14366  45.818  44.496   1.661
 b 20.068 20.724 30.458 21.475 33.352 28.157 5.646 16.916 9.398 8.795
 c     52     87    131    149    156    181    195    200    230    234
  -------------------------------------------------------------
  
 overall CC1/2ano:   -25.548 nref=    2668 (but the overall value is meaningless!)
 <CC1/2ano> :   -21.370 (frequency-weighted average of CC1/2ano in resolution shells)
 CC1/2ano in resolution shells:
   -75.0   -1.7  -30.1  -41.3  -38.8  -20.1  -18.2   -8.6  -17.7   -9.6
 frequency i.e. number of unique Friedel pairs:
      73    140    168    241    262    320    319    351    397    397
  
  headings for lines starting with d,e,f:
 d: <CC1/2ano> of each dataset:
 d: reflections of this dataset only      reflections of all datasets
 d: set   nref    with without   delta     nref    with without   delta
 e: delta-CC1/2ano in resolution shells
 f: # reflections for delta-CC1/2ano
 d     1    190 -30.590 -20.348 -10.922     2233 -17.969 -17.817  -0.157
 e -42.962 -6.341 4.502 -41.515 -76.721 -36.825 43.947 19.535 21.803 -23.853
 f     11     12      9     14     17     28     26     22     26     25
 d     2    234 -16.480 -16.515   0.036     2336 -26.125 -26.132   0.008
 e -3.116 -2.078 -3.249 -23.820 6.424 9.198 -3.791 1.123 6.966 -4.309
 f      5     12     16     12     35     30     40     24     29     31
 d     3    343 -40.435 -31.820  -9.887     2245 -22.659 -19.640  -3.160
 e -1.713 12.234 -11.942 -63.179 5.125 -4.423 15.291 -30.082 .859 3.714
 f      7     16     27     33     42     45     38     54     43     38
 d     4    250 -32.340 -29.274  -3.387     2385 -19.104 -18.426  -0.702
 e 22.408 37.540 12.328 -13.456 -2.729 1.911 -36.173 3.026 -6.757 12.916
 f      3     13     12     25     39     42     41     30     23     22
 d     5    179 -22.995 -24.947   2.070     2417 -26.768 -27.230   0.499
 e 36.142 13.527 -10.456 -7.251 13.331 -.923 27.239 -4.208 -9.635 -10.625
 f      5      4      7      6     19     22     29     30     23     34
 d     6    188 -10.090 -13.603   3.562     2412 -21.564 -21.759   0.205
 e -43.278 1.987 48.529 -2.536 35.294 -14.994 21.066 -6.607 -.446 -8.161
 f      5      9      8     10     21     28     25     30     27     25
 d     7    292 -34.206 -35.887   1.915     2316 -26.435 -26.723   0.309
 e -19.814 34.972 .715 48.559 -11.683 -4.391 -14.145 5.337 -3.722 2.527
 f     12     15     16     23     31     43     28     46     45     33
 d     8    305  -6.575  -7.745   1.176     2353 -19.132 -19.241   0.113
 e -7.804 -5.876 -10.001 4.878 -37.785 8.976 14.698 -4.716 9.080 11.786
 f     11     17     17     26     28     45     34     38     42     47
 d     9    283 -35.313 -32.348  -3.347     2398 -20.019 -19.463  -0.578
 e -90.495 31.505 6.592 -45.999 -7.955 -11.621 6.013 -6.399 18.725 2.816
 f      7     16     14     23     31     32     39     37     52     32
 d    10    228 -31.230 -36.231   5.639     2184 -20.991 -21.921   0.975
 e -10.975 26.119 -31.629 9.944 10.170 24.916 -19.125 25.874 -12.123 -.504
 f      6     23     12     16     17     32     31     33     27     31
 d    11    204 -25.646 -21.039  -4.870     2344 -26.292 -25.997  -0.317
 e 8.152 1.052 -8.483 4.821 5.281 -.012 -33.636 6.064 -12.304 -7.890
 f     13     11     16     14     19     25     24     28     26     28
 d    12    314 -20.795 -27.734   7.363     2299 -21.005 -22.984   2.080
 e -53.587 19.115 79.436 41.903 -3.288 4.497 22.135 12.845 -21.183 -1.646
 f      4     15     16     27     34     37     34     46     54     47
 d    13    233  -6.551  -6.622   0.071     2411 -21.747 -22.084   0.354
 e 7.268 -17.245 31.471 30.207 .209 7.647 5.126 -61.071 16.081 14.792
 f      4     11     15     20     20     34     38     34     27     30
 d    14    321 -39.745 -43.950   5.095     2335 -21.004 -21.556   0.578
 e 6.661 20.182 -13.578 -14.964 .663 20.951 -5.357 11.106 6.979 4.542
 f     13     26     24     29     37     30     31     33     48     50
 d    15    211 -25.574 -27.428   1.993     2451 -21.107 -22.106   1.049
 e 9.034 24.046 51.709 10.903 25.126 -31.105 -39.654 -43.178 6.990 15.268
 f      9     18     23     17     21     28     15     22     28     30
 d    16    164 -28.372 -24.930  -3.704     2381 -18.839 -18.689  -0.156
 e 20.336 23.610 -96.956 -10.020 7.356 1.404 14.821 -20.025 -4.886 -17.264
 f      2      6      2      9     17     20     33     24     20     31
 d    17    218 -13.441  -3.184 -10.302     2460 -20.794 -19.807  -1.029
 e -13.966 -12.793 5.985 10.830 -5.428 -23.834 17.910 -9.981 -25.620 -22.550
 f      2     13     11     19     16     22     26     38     34     37
 d    18    136 -32.513 -31.586  -1.034     2379 -21.312 -21.014  -0.312
 e 55.859 17.851 -8.273 -57.797 -68.191 27.216 15.219 15.258 -14.424 -10.376
 f      4     14     12     16     14     19     18     13     16     10
 d    19    295 -26.211 -37.786  12.848     2289 -19.913 -21.583   1.745
 e -3.719 -15.248 39.777 -13.377 11.415 8.559 -15.482 8.791 25.058 49.701
 f      8     13     17     33     30     35     40     38     38     43
 d    20    309 -33.133 -33.400   0.300     2351 -21.683 -22.124   0.463
 e -30.012 13.423 -2.376 15.330 -16.239 -2.850 -9.170 5.549 10.005 1.910
 f      9      9     15     32     33     36     40     48     48     39
  
  best delta-CC1/2_only=   26.22747    
  median of delta-cc1/2 ("only" i.e. 6th col of "a" lines) =   10.93907    
  noise= (MAD, median absolute deviation) from this median =   5.816339    
  median of delta-cc1/2 ("all" i.e. 10th col of "a" lines) =   1.174427    
  noise= (MAD, median absolute deviation) from this median =  0.6438574    
  median of delta-cc1/2-ano ("only" i.e. 6th col of "d" lines) =  0.1854570    
  noise= (MAD, median absolute deviation) from this median =   3.552712    
  median of delta-cc1/2-ano ("all" i.e. 10th col of "d" lines) =  0.1588948    
  noise= (MAD, median absolute deviation) from this median =  0.4448406    
  
 Wrote a commented XSCALE.INP.rename_me that is sorted on delta-CC1/2 "only"
 You may edit that file, or e.g. add lines after each INPUT_FILE line with sed '/INPUT_FILE/a INCLUDE_RESOLUTION_RANGE=99 3'
 normal termination

and the resulting file XSCALE.INP.rename_me is:

SPACE_GROUP_NUMBER=   19
UNIT_CELL_CONSTANTS=     38.30     79.10     79.10  90.000  90.000  90.000
OUTPUT_FILE= temp.ahkl
PRINT_CORRELATIONS= FALSE
SAVE_CORRECTION_IMAGES= FALSE
FRIEDEL'S_LAW= FALSE
! median of delta-cc1/2 "only" values=    10.939
! noise (MAD) of these values=     5.816
! median of delta-cc1/2 "all" values=     1.174
! noise (MAD) of these values=     0.644
! median of delta-cc1/2-ano "only" values=     0.185
! noise (MAD) of these values=     3.553
! median of delta-cc1/2-ano "all" values=     0.159
! noise (MAD) of these values=     0.445
! input files sorted by deltacc12_only (highest first):
! deltacc12 only / all:   26.2275    1.9103 deltacc12-ano only /all:  -10.9223   -0.1569
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0001/xds/XDS_ASCII.HKL
! deltacc12 only / all:   21.4650    2.2639 deltacc12-ano only /all:   -1.0339   -0.3117
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0018/xds/XDS_ASCII.HKL
! deltacc12 only / all:   18.0364    1.8724 deltacc12-ano only /all:    0.0708    0.3545
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0013/xds/XDS_ASCII.HKL
! deltacc12 only / all:   17.7684    1.9166 deltacc12-ano only /all:   -3.3870   -0.7021
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0004/xds/XDS_ASCII.HKL
! deltacc12 only / all:   17.1589    2.3726 deltacc12-ano only /all:    7.3634    2.0795
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0012/xds/XDS_ASCII.HKL
! deltacc12 only / all:   15.3174    1.6608 deltacc12-ano only /all:    0.3001    0.4632
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0020/xds/XDS_ASCII.HKL
! deltacc12 only / all:   14.6140    1.8288 deltacc12-ano only /all:    1.1762    0.1129
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0008/xds/XDS_ASCII.HKL
! deltacc12 only / all:   12.5208    1.2582 deltacc12-ano only /all:    1.9155    0.3089
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0007/xds/XDS_ASCII.HKL
! deltacc12 only / all:   11.5122    1.0907 deltacc12-ano only /all:    0.0360    0.0079
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0002/xds/XDS_ASCII.HKL
! deltacc12 only / all:   11.2330    1.6064 deltacc12-ano only /all:   -9.8867   -3.1596
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0003/xds/XDS_ASCII.HKL
! deltacc12 only / all:   10.6452    1.2727 deltacc12-ano only /all:   -3.7041   -0.1557
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0016/xds/XDS_ASCII.HKL
! deltacc12 only / all:    9.6737    0.8816 deltacc12-ano only /all:    1.9932    1.0487
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0015/xds/XDS_ASCII.HKL
! deltacc12 only / all:    8.6341    0.7283 deltacc12-ano only /all:    3.5620    0.2049
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0006/xds/XDS_ASCII.HKL
! deltacc12 only / all:    8.0151    1.0507 deltacc12-ano only /all:   -4.8702   -0.3171
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0011/xds/XDS_ASCII.HKL
! deltacc12 only / all:    5.5262    0.5542 deltacc12-ano only /all:   -3.3475   -0.5778
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0009/xds/XDS_ASCII.HKL
! deltacc12 only / all:    3.9182    0.5411 deltacc12-ano only /all:    5.6393    0.9750
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0010/xds/XDS_ASCII.HKL
! deltacc12 only / all:    3.7935    0.4089 deltacc12-ano only /all:  -10.3019   -1.0286
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0017/xds/XDS_ASCII.HKL
! deltacc12 only / all:    3.0997    0.3399 deltacc12-ano only /all:    2.0699    0.4987
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0005/xds/XDS_ASCII.HKL
! deltacc12 only / all:    2.8817    0.1446 deltacc12-ano only /all:    5.0954    0.5780
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0014/xds/XDS_ASCII.HKL
! deltacc12 only / all:    0.1054    0.0707 deltacc12-ano only /all:   12.8477    1.7449
INPUT_FILE=/scratch/data/JamesHolton_microfocus/2019/wedge0019/xds/XDS_ASCII.HKL

Correlation against a reference data set (-r <reference> option)

The correlation of the experimental data set against the user-supplied reference data is shown in the lines starting with r. To prepare a reference data set if the refinement was done with phenix.refine, one could use e.g.

mtz2various hklin 2bn3_refine_001.mtz hklout temp.hkl <<eof
OUTPUT USER *
LABIN FC=F-model PHIC=PHIF-model
END
eof

- the column corresponding to PHIC will not be used by xdscc12. Alternatively,

sftools
read mymodel_001.mtz
write temp.hkl format(3i5,f10.3) col F-model
y
quit

Reference data with anomalous signal (additional -s option)

The correlation of the anomalous difference of the experimental data set against the anomalous signal of the user-supplied reference data is shown in the lines starting with s. A simple way to obtain Fcalc(+) and Fcalc(-) is to run phenix.refine with options (in case of S as anomalous scatterer)

refinement.input.xray_data.labels="F(+),SIGF(+),F(-),SIGF(-),merged"  refinement.refine.anomalous_scatterers.group.selection="element S" strategy=individual_sites+individual_adp+group_anomalous+occupancies

and then

sftools <<eof
read mymodel_001.mtz
write anom-reference.hkl format(3i5,2f10.3) col "F-model(+)" "F-model(-)"
y
quit
eof

in which case sftools outputs only the acentric reflections - only those have anomalous differences. XDSCC12 then has to be run with the -s -r anom-reference.hkl option.

See also

A complete description of how to process serial crystallography data with XDS/XSCALE is given in SSX.

xscale_isocluster is a program that implements the method of Brehm and Diederichs (2014) and theory of Diederichs (2017). It serves to identify groups of related datasets in a reflection file produced by XSCALE, and should be used before XDSCC12.

To remove bad frames from a XDS_ASCII.HKL file, you can re-INTEGRATE or just re-CORRECT with the keyword EXCLUDE_DATA_RANGE in XDS.INP.