CC1/2: Difference between revisions

5 bytes removed ,  6 September 2018
no edit summary
No edit summary
No edit summary
Line 16: Line 16:
<math>\sigma^2_{\epsilon i} =  \frac{1}{n_{i}-1} \cdot \left ( \sum^{n_{i}}_{j} x^2_{j,i} - \frac{\left ( \sum^{n_{i}}_{j}x_{j,i} \right )^2}{n_{i}} \right )    / \frac{n_{i}}{2} </math>
<math>\sigma^2_{\epsilon i} =  \frac{1}{n_{i}-1} \cdot \left ( \sum^{n_{i}}_{j} x^2_{j,i} - \frac{\left ( \sum^{n_{i}}_{j}x_{j,i} \right )^2}{n_{i}} \right )    / \frac{n_{i}}{2} </math>


<math>\sigma^2_{\epsilon i} </math> is then divided by the factor  <math>\frac{n}{2} </math>, because the variance of the sample mean (intensities of the merged observations) is the quantity of interest. The division by '''n/2''' takes care of providing the variance of the mean ([https://en.wikipedia.org/wiki/Sample_mean_and_covariance#Variance_of_the_sample_mean ]) (merged) intensity of the '''half'''-datasets, as defined in [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457925/ Karplus and Diederichs (2012)]. These "variances of means" are averaged over all unique reflections of the resolution shell:
<math>\sigma^2_{\epsilon i} </math> is divided by the factor  <math>\frac{n}{2} </math>, because the variance of the sample mean (intensities of the merged observations) is the quantity of interest. The division by '''n/2''' takes care of providing the variance of the mean ([https://en.wikipedia.org/wiki/Sample_mean_and_covariance#Variance_of_the_sample_mean ]) (merged) intensity of the '''half'''-datasets, as defined in [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457925/ Karplus and Diederichs (2012)]. These "variances of means" are averaged over all unique reflections of the resolution shell:


<math>\sigma^2_{\epsilon}=\sum^N_{i} \sigma^2_{\epsilon i} / N </math>  
<math>\sigma^2_{\epsilon}=\sum^N_{i} \sigma^2_{\epsilon i} / N </math>  
54

edits