2,684
edits
(fix missing 1/n (thanks Yunyun Gao), fix Fortran95 code) |
|||
Line 36: | Line 36: | ||
---- | ---- | ||
===''' <math>\sigma^2_{y} </math>'''=== | ===calculating ''' <math>\sigma^2_{y} </math>'''=== | ||
Let N be the number of reflections in a resolution shell. With <math>\overline{x}_{ | Let N be the number of reflections in a resolution shell. With <math>\overline{x}_{I}= \frac{1} {n} \sum^n_{j} x_{j,i}</math> , the unbiased sample variance from all averaged intensities of all unique reflections is calculated by: | ||
<math>s^2_{y} = \frac{1}{N-1} \cdot \left (\sum^N_{i} \overline{x}_{i}^2 - \frac{\left ( \sum^N_{i} \overline{x}_{i} \right )^2}{ N} \right ) </math> | <math>s^2_{y} = \frac{1}{N-1} \cdot \left (\sum^N_{i} \overline{x}_{i}^2 - \frac{\left ( \sum^N_{i} \overline{x}_{i} \right )^2}{ N} \right ) </math> | ||
Line 99: | Line 99: | ||
sumibar=sumi+xbar | sumibar=sumi+xbar | ||
sumibar2=sumibar2+xbar**2 | sumibar2=sumibar2+xbar**2 | ||
sumsig2eps= | sumsig2eps=sumsig2eps + (SUM(iobs(:,i)**2)-xbar**2*nobs)/(nobs-1)/(nobs/2) | ||
END DO | END DO | ||
sig2y=(sumibar2-sumibar**2/nref)/(nref-1) | sig2y=(sumibar2-sumibar**2/nref)/(nref-1) |