2,684
edits
(fix missing 1/n (thanks Yunyun Gao), fix Fortran95 code) |
|||
Line 38: | Line 38: | ||
===calculating ''' <math>\sigma^2_{y} </math>'''=== | ===calculating ''' <math>\sigma^2_{y} </math>'''=== | ||
Let N be the number of reflections in a resolution shell. With <math>\overline{x}_{ | Let N be the number of reflections in a resolution shell. With <math>\overline{x}_{i}= \frac{1} {n} \sum^n_{j} x_{j,i}</math> , the unbiased sample variance from all averaged intensities of all unique reflections is calculated by: | ||
<math>s^2_{y} = \frac{1}{N-1} \cdot \left (\sum^N_{i} \overline{x}_{i}^2 - \frac{\left ( \sum^N_{i} \overline{x}_{i} \right )^2}{ N} \right ) </math> | <math>s^2_{y} = \frac{1}{N-1} \cdot \left (\sum^N_{i} \overline{x}_{i}^2 - \frac{\left ( \sum^N_{i} \overline{x}_{i} \right )^2}{ N} \right ) </math> |