XSCALE ISOCLUSTER: Difference between revisions

Jump to navigation Jump to search
m
no edit summary
mNo edit summary
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
xscale_isocluster [ftp://turn5.biologie.uni-konstanz.de/pub/linux_bin/xscale_isocluster (Linux binary)][ftp://turn5.biologie.uni-konstanz.de/pub/mac_bin/xscale_isocluster (Mac binary)] is a program that clusters datasets stored in a single unmerged reflection file as written by [[XSCALE]]. It implements the method of [https://doi.org/10.1107/S1399004713025431 Brehm and Diederichs (2014)] and theory of [https://doi.org/10.1107/S2059798317000699 Diederichs (2017)].
xscale_isocluster [https://{{SERVERNAME}}/pub/linux_bin/xscale_isocluster (Linux binary)][https://{{SERVERNAME}}/pub/mac_bin/xscale_isocluster (Mac binary)] is a program that clusters datasets stored in a single unmerged reflection file as written by [[XSCALE]]. It implements the method of [https://doi.org/10.1107/S1399004713025431 Brehm and Diederichs (2014)] and theory of [https://doi.org/10.1107/S2059798317000699 Diederichs (2017)].


The help output (obtained by using the <code>-h</code> option) is
The help output (obtained by using the <code>-h</code> option) is
Line 29: Line 29:
After segmentation of data sets in n-dimensional space, the program may be used (by specifying the -clu <m> option; default m=1) to try and identify <m> clusters of data sets. The program writes files called XSCALE.1.INP with lines required for scaling the datasets of cluster 1, and similarly XSCALE.2.INP for cluster 2, and so on. Typically, one may want to create directories cluster1 cluster2 ..., and then establish symlinks (called XSCALE.INP) in these to the XSCALE.#.INP files. This enables separate scaling of each cluster.
After segmentation of data sets in n-dimensional space, the program may be used (by specifying the -clu <m> option; default m=1) to try and identify <m> clusters of data sets. The program writes files called XSCALE.1.INP with lines required for scaling the datasets of cluster 1, and similarly XSCALE.2.INP for cluster 2, and so on. Typically, one may want to create directories cluster1 cluster2 ..., and then establish symlinks (called XSCALE.INP) in these to the XSCALE.#.INP files. This enables separate scaling of each cluster.


Furthermore, a file iso.pdb is produced that may be loaded into coot. Then use Show/Cell and Symmetry/Show unit cell (to see the origin, which coot marks with "0"), and visualize the relations between data sets. Systematic differences are related to the angle (with the tip of the angle at the origin) between data sets; random differences are related to the lengths of the vectors (starting at the origin; short vectors correspond to noisy data sets). With the -i option, individual iso.x.pdb files can be written for each cluster. For an example, see [[SSX]].
Furthermore, a file iso.pdb is produced that may be loaded into coot. Then use Show/Cell and Symmetry/Show unit cell (to see the origin, which coot marks with "0"), and visualize the relations between data sets. Systematic differences are related to the angle (with the tip of the angle at the origin) between the vectors that represent the data sets; ideally, in the case of isomorphous data sets all vectors point into the same direction. Random differences are related to the lengths of the vectors (starting at the origin; short vectors correspond to weak/noisy data sets). With the -i option, individual iso.x.pdb files can be written for each cluster. For an example, see [[SSX]].


== Output ==
== Output ==
Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu