Resolution: Difference between revisions

Jump to navigation Jump to search
18 bytes added ,  28 February 2010
m
fixed typos in math formulae
m (fixed typos in math formulae)
Line 1: Line 1:
The resolution of a reflection <math>(hkl)</math> is defined as the inverse of the reciprocal lattice vector, i.e. <math>r = \sqrt{\frac{1}{\mathbf{d}^{*} \cdot <mathbf{d}^{*}}}</math> with <math> \mathbf{d}^{*} = h \mathb{a}^{*} + k {b}^{*} + l \mathb{c}^{*}</math>.
The resolution of a reflection <math>(hkl)</math> is defined as the inverse of the reciprocal lattice vector, i.e. <math>\frac{1}{r^2} = \mathbf{d}^{*} \cdot \mathbf{d}^{*}</math> with <math> \mathbf{d}^{*} = h \mathbf{a}^{*} + k \mathbf{b}^{*} + l \mathbf{c}^{*}</math>.


The formula to calculate the resolution from the unit cell dimensions <math>a, b, c, \alpha, \beta, \gamma</math> looks a little appaling:
The formula to calculate the resolution from the unit cell dimensions <math>a, b, c, \alpha, \beta, \gamma</math> looks a little appaling:


<math>\frac{1}{\sin^2\beta - \sin^2\alpha} \left( \frac{l}{c} - \frac{k\cos \alpha}{b} - \frac{h\cos \beta}{a}\right)^2 + \left( \frac{ak-bh\cos\gamma}{ab\sin\gamma}\right)^2 + \frac{h^2}{a^2}</math>.
<math>\frac{1}{r^2} \frac{1}{\sin^2\beta - \sin^2\alpha} \left( \frac{l}{c} - \frac{k\cos \alpha}{b} - \frac{h\cos \beta}{a}\right)^2 + \left( \frac{ak-bh\cos\gamma}{ab\sin\gamma}\right)^2 + \frac{h^2}{a^2}</math>.


When the [[spacegroup]] is orthorombic, however, this formula simplifies to
When the [[spacegroup]] is orthorombic, however, this formula simplifies to
<math> \frac{1}{r^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}</math>.
<math> \frac{1}{r^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}</math>.
25

edits

Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu