1,330
edits
(RIP) |
|||
Line 221: | Line 221: | ||
Good quality MAD data, a high solvent content and/or high resolution for the native data can lead to maps of high quality that can be autotraced (e.g. with wARP) immediately. The .phs files contain h, k, l, F, fom, φ and σ(F) in free format and can be read directly into [[Coot]] or converted to CCP4 .mtz format using [[f2mtz]], e.g. for further density modification exploiting NCS using the CCP4 program [[ccp4dev:Automated phase improvement with Pirate|Pirate]]. Note that if the inverted heavy atom enantiomorph is the correct one, the corresponding phases are in the *_i.phs file and SHELXE may have inverted the space group (e.g. P4<sub>1</sub> to P4<sub>3</sub>), which should be taken into account when moving to other programs!<br> | Good quality MAD data, a high solvent content and/or high resolution for the native data can lead to maps of high quality that can be autotraced (e.g. with wARP) immediately. The .phs files contain h, k, l, F, fom, φ and σ(F) in free format and can be read directly into [[Coot]] or converted to CCP4 .mtz format using [[f2mtz]], e.g. for further density modification exploiting NCS using the CCP4 program [[ccp4dev:Automated phase improvement with Pirate|Pirate]]. Note that if the inverted heavy atom enantiomorph is the correct one, the corresponding phases are in the *_i.phs file and SHELXE may have inverted the space group (e.g. P4<sub>1</sub> to P4<sub>3</sub>), which should be taken into account when moving to other programs!<br> | ||
A writeup for a case study, by GMS, as of Jan 13, 2013, is at [https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=ind1301&L=ccp4bb&F=&S=&X=160F8F2598F868FF2A&P=83871]. | |||
=== The free lunch algorithm (FLA) === | === The free lunch algorithm (FLA) === |