SHELX C/D/E: Difference between revisions

Jump to navigation Jump to search
12 bytes removed ,  14 March 2008
m
mNo edit summary
Line 1: Line 1:
== SHELXC ==
== SHELXC ==


Line 14: Line 13:
In general the critical parameters for locating heavy atoms with SHELXD are:
In general the critical parameters for locating heavy atoms with SHELXD are:


1. The resolution cutoff. In the MAD case this is best determined by finding where the correlation coefficient between the signed anomalous differences for wavelengths with the highest anomalous signal (PEAK and HREM or PEAK and INFL) falls below about 30%. For SAD a less reliable guide is where delF/sig(delF) falls below about 1.2 (a value of 0.8 would indicate pure noise), and for S-SAD with CuKalpha the data can be truncated where I/sigma for the native data falls below 30. If unmerged data are used, SHELXC calculates a correlation coefficient between two randomly selected subsets of the signed anomalous differences; this is a better indicator because it does not require that the intensity esds are on an absolute scale, but it does require a reasonable redundancy and again the data can be truncated where it drops to below 30% (the CCP4 program SCALA prints a similar statistic).
# The resolution cutoff. In the MAD case this is best determined by finding where the correlation coefficient between the signed anomalous differences for wavelengths with the highest anomalous signal (PEAK and HREM or PEAK and INFL) falls below about 30%. For SAD a less reliable guide is where delF/sig(delF) falls below about 1.2 (a value of 0.8 would indicate pure noise), and for S-SAD with CuKalpha the data can be truncated where I/sigma for the native data falls below 30. If unmerged data are used, SHELXC calculates a correlation coefficient between two randomly selected subsets of the signed anomalous differences; this is a better indicator because it does not require that the intensity esds are on an absolute scale, but it does require a reasonable redundancy and again the data can be truncated where it drops to below 30% (the CCP4 program SCALA prints a similar statistic).
 
# The estimated number of sites (FIND) should be within about 20% of the true number. For SeMet or S-SAD phasing there should be a sharp drop in the occupancy after the last true site. For iodide soaks, a good rule of thumb is to start with a number of iodide sites equal to the number of amino-acids in the asymmetric unit divided by 15. If after SHELXD occupancy refinement the occupancy of the last site is more than 0.2 it might be worth increasing this number, and vice versa.  
2. The estimated number of sites (FIND) should be within about 20% of the true number. For SeMet or S-SAD phasing there should be a sharp drop in the occupancy after the last true site. For iodide soaks, a good rule of thumb is to start with a number of iodide sites equal to the number of amino-acids in the asymmetric unit divided by 15. If after SHELXD occupancy refinement the occupancy of the last site is more than 0.2 it might be worth increasing this number, and vice versa.  
# A common 'user error' is to set MIND -3.5 even though the distances between heavy atoms are less than 3.5 Å.  For example, in a Fe4S4 cluster the Fe...Fe distance is about 2.7 Å, so MIND -2 would be appropriate. A disulfide bond has a length of 2.03 Å so then MIND -1.5 could be used to resolve the sulfur atoms, however if DSUL is used for this purpose MIND -3.5 is required.
 
# If heavy atoms can lie on special positions (as is the case with an iodide soak in a space group with twofold axes) the rejection of atoms on special positions should be switched off by giving the second MIND parameter as -0.1 (as in the above thaumatin example).
3. A common 'user error' is to set MIND -3.5 even though the distances between heavy atoms are less than 3.5 Å.  For example, in a Fe4S4 cluster the Fe...Fe distance is about 2.7 Å, so MIND -2 would be appropriate. A disulfide bond has a length of 2.03 Å so then MIND -1.5 could be used to resolve the sulfur atoms, however if DSUL is used for this purpose MIND -3.5 is required.
# In cubic space groups the Patterson seeding (PATS) is slow and less effective, it is recommended that 'PATS' is replaced by 'WEED 0.3'.<br>
 
4. If heavy atoms can lie on special positions (as is the case with an iodide soak in a space group with twofold axes) the rejection of atoms on special positions should be switched off by giving the second MIND parameter as -0.1 (as in the above thaumatin example).
 
5. In cubic space groups the Patterson seeding (PATS) is slow and less effective, it is recommended that 'PATS' is replaced by 'WEED 0.3'.<br>


For MAD, a CC of 40 to 50% indicates a good solution, for SAD etc. values around 30% may well be correct, especially if the same solution or group of solutions has the highest values of CC, CC(Weak) and PATFOM, and they are well separated from the values for the non-solutions.  The CC values tend to increase as the resolution is lowered.  Heavy atom soaks truncated to low resolution often give spuriously high CC values, but these 'solutions' can be recognized as false by their low CC(weak) values.<br>
For MAD, a CC of 40 to 50% indicates a good solution, for SAD etc. values around 30% may well be correct, especially if the same solution or group of solutions has the highest values of CC, CC(Weak) and PATFOM, and they are well separated from the values for the non-solutions.  The CC values tend to increase as the resolution is lowered.  Heavy atom soaks truncated to low resolution often give spuriously high CC values, but these 'solutions' can be recognized as false by their low CC(weak) values.<br>
Line 29: Line 24:


The default weights for the CC are 1/sig(E)^2.  The presence of one or two reflections with very low esds can lead to unreasonably high values of the CC for wrong solutions.  If the esds are unreliable it is advisable to use 'CCWT 0.1' in the .ins file for SHELXD. The precision of the heavy atom coordinates can be improved, at the cost of the CPU time, by making the Fourier grid finer (e.g. FRES 4 instead of the default 2.5).<br>
The default weights for the CC are 1/sig(E)^2.  The presence of one or two reflections with very low esds can lead to unreasonably high values of the CC for wrong solutions.  If the esds are unreliable it is advisable to use 'CCWT 0.1' in the .ins file for SHELXD. The precision of the heavy atom coordinates can be improved, at the cost of the CPU time, by making the Fourier grid finer (e.g. FRES 4 instead of the default 2.5).<br>


== SHELXE ==
== SHELXE ==
1,330

edits

Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu