Old way of Space group determination: Difference between revisions

Jump to navigation Jump to search
m
no edit summary
No edit summary
mNo edit summary
Line 3: Line 3:
* after CORRECT has thus run in P1, one may try other spacegroups by inspecting the table "DETERMINATION OF LATTICE CHARACTER AND BRAVAIS LATTICE" in [[IDXREF.LP]] (see the example below).
* after CORRECT has thus run in P1, one may try other spacegroups by inspecting the table "DETERMINATION OF LATTICE CHARACTER AND BRAVAIS LATTICE" in [[IDXREF.LP]] (see the example below).
* for each possible lattice character, starting with the one corresponding to highest symmetry, do:
* for each possible lattice character, starting with the one corresponding to highest symmetry, do:
** look up space groups corresponding to lattice characters from the list ''FIXME: give name'' in [[IDXREF.LP]] (again see the example below).
** look up space groups corresponding to lattice characters from the list BRAVAIS-TYPE / POSSIBLE SPACE-GROUPS FOR PROTEIN CRYSTALS in [[IDXREF.LP]] (repeated at bottom of this article).
** modify SPACE_GROUP_NUMBER=<number according to that list>
** modify SPACE_GROUP_NUMBER=<number according to that list>
** modify or insert REIDX=<12 numbers corresponding to the lattice character, from the table>
** modify or insert REIDX=<12 numbers corresponding to the lattice character, from the table>
Line 73: Line 73:
Obviously there's a sharp increase from Lattice character 32 (QoF=2.8) to 14 (QoF=135.2) indicating that the highest symmetry spacegroups consistent with the observed pattern of Bragg reflections are oP (orthorhombic primitive).
Obviously there's a sharp increase from Lattice character 32 (QoF=2.8) to 14 (QoF=135.2) indicating that the highest symmetry spacegroups consistent with the observed pattern of Bragg reflections are oP (orthorhombic primitive).


more to come!
BRAVAIS-            POSSIBLE SPACE-GROUPS FOR PROTEIN CRYSTALS
  TYPE                    [SPACE GROUP NUMBER,SYMBOL]
  aP      [1,P1]
  mP      [3,P2] [4,P2(1)]
mC,mI    [5,C2]
  oP      [16,P222] [17,P222(1)] [18,P2(1)2(1)2] [19,P2(1)2(1)2(1)]
  oC      [21,C222] [20,C222(1)]
  oF      [22,F222]
  oI      [23,I222] [24,I2(1)2(1)2(1)]
  tP      [75,P4] [76,P4(1)] [77,P4(2)] [78,P4(3)] [89,P422] [90,P42(1)2]
          [91,P4(1)22] [92,P4(1)2(1)2] [93,P4(2)22] [94,P4(2)2(1)2]
          [95,P4(3)22] [96,P4(3)2(1)2]
  tI      [79,I4] [80,I4(1)] [97,I422] [98,I4(1)22]
  hP      [143,P3] [144,P3(1)] [145,P3(2)] [149,P312] [150,P321] [151,P3(1)12]
          [152,P3(1)21] [153,P3(2)12] [154,P3(2)21] [168,P6] [169,P6(1)]
          [170,P6(5)] [171,P6(2)] [172,P6(4)] [173,P6(3)] [177,P622]
          [178,P6(1)22] [179,P6(5)22] [180,P6(2)22] [181,P6(4)22] [182,P6(3)22]
  hR      [146,R3] [155,R32]
  cP      [195,P23] [198,P2(1)3] [207,P432] [208,P4(2)32] [212,P4(3)32]
          [213,P4(1)32]
  cF      [196,F23] [209,F432] [210,F4(1)32]
  cI      [197,I23] [199,I2(1)3] [211,I432] [214,I4(1)32]
2,684

edits

Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu