2,684
edits
(correct CCmax to CC All) |
No edit summary |
||
Line 1: | Line 1: | ||
==XDS data reduction== | ==XDS data reduction== | ||
===dataset | ===dataset 1=== | ||
Using "generate_XDS.INP ../../APS/22-ID/2qvo/ACA10_AF1382_1.0???" we obtain: | |||
DIRECTION_OF_DETECTOR_X-AXIS= 1.0 0.0 0.0 | JOB= XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT | ||
ORGX= 1996.00 ORGY= 2028.00 ! check these values with adxv ! | |||
DETECTOR_DISTANCE= 125.000 | |||
OSCILLATION_RANGE= 1.000 | |||
X-RAY_WAVELENGTH= 1.90000 | |||
NAME_TEMPLATE_OF_DATA_FRAMES=../../APS/22-ID/2qvo/ACA10_AF1382_1.0??? | |||
! REFERENCE_DATA_SET=xxx/XDS_ASCII.HKL ! e.g. to ensure consistent indexing | |||
DATA_RANGE=1 360 | |||
SPOT_RANGE=1 180 | |||
! BACKGROUND_RANGE=1 10 ! rather use defaults (first 5 degree of rotation) | |||
SPACE_GROUP_NUMBER=0 ! 0 if unknown | |||
UNIT_CELL_CONSTANTS= 70 80 90 90 90 90 ! put correct values if known | |||
INCLUDE_RESOLUTION_RANGE=50 0 ! after CORRECT, insert high resol limit; re-run CORRECT | |||
FRIEDEL'S_LAW=FALSE ! This acts only on the CORRECT step | |||
! If the anom signal turns out to be, or is known to be, very low or absent, | |||
! use FRIEDEL'S_LAW=TRUE instead (or comment out the line); re-run CORRECT | |||
! remove the "!" in the following line: | |||
! STRICT_ABSORPTION_CORRECTION=TRUE | |||
! if the anomalous signal is strong: in that case, in CORRECT.LP the three | |||
! "CHI^2-VALUE OF FIT OF CORRECTION FACTORS" values are significantly> 1, e.g. 1.5 | |||
! | |||
! exclude (mask) untrusted areas of detector, e.g. beamstop shadow : | |||
! UNTRUSTED_RECTANGLE= 1800 1950 2100 2150 ! x-min x-max y-min y-max ! repeat | |||
! UNTRUSTED_ELLIPSE= 2034 2070 1850 2240 ! x-min x-max y-min y-max ! if needed | |||
! | |||
! parameters with changes wrt default values: | |||
TRUSTED_REGION=0.00 1.2 ! partially use corners of detectors; 1.41421=full use | |||
VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS=7000. 30000. ! often 8000 is ok | |||
MINIMUM_ZETA=0.05 ! integrate close to the Lorentz zone; 0.15 is default | |||
STRONG_PIXEL=6 ! COLSPOT: only use strong reflections (default is 3) | |||
MINIMUM_NUMBER_OF_PIXELS_IN_A_SPOT=3 ! default of 6 is sometimes too high | |||
REFINE(INTEGRATE)=CELL BEAM ORIENTATION ! AXIS DISTANCE | |||
! parameters specifically for this detector and beamline: | |||
DETECTOR= CCDCHESS MINIMUM_VALID_PIXEL_VALUE= 1 OVERLOAD= 65500 | |||
NX= 4096 NY= 4096 QX= .0732420000 QY= .0732420000 ! to make CORRECT happy if frames are unavailable | |||
DIRECTION_OF_DETECTOR_X-AXIS=1 0 0 | |||
DIRECTION_OF_DETECTOR_Y-AXIS=0 1 0 | |||
INCIDENT_BEAM_DIRECTION=0 0 1 | |||
ROTATION_AXIS=1 0 0 ! at e.g. SERCAT ID-22 this needs to be -1 0 0 | |||
FRACTION_OF_POLARIZATION=0.98 ! better value is provided by beamline staff! | |||
POLARIZATION_PLANE_NORMAL=0 1 0 | |||
Now we run xds_par. This runs to completion. We should at least inspect, using XDS-Viewer, the file FRAME.cbf since this shows us the last frame of the dataset, with boxes superimposed which correspond to the expected locations of reflections. | |||
The automatic spacegroup determination (CORRECT.LP) comes up with | |||
LATTICE- BRAVAIS- QUALITY UNIT CELL CONSTANTS (ANGSTROEM & DEGREES) REINDEXING TRANSFORMATION | |||
CHARACTER LATTICE OF FIT a b c alpha beta gamma | |||
* 44 aP 0.0 41.2 53.5 53.5 90.3 90.1 90.1 -1 0 0 0 0 1 0 0 0 0 -1 0 | |||
* 31 aP 0.8 41.2 53.5 53.5 89.7 90.1 89.9 1 0 0 0 0 1 0 0 0 0 1 0 | |||
* 25 mC 1.4 75.4 75.8 41.2 90.0 90.1 90.0 0 1 -1 0 0 -1 -1 0 -1 0 0 0 | |||
* 35 mP 1.8 53.5 41.2 53.5 90.1 90.3 90.1 0 -1 0 0 1 0 0 0 0 0 1 0 | |||
* 23 oC 3.1 75.4 75.8 41.2 90.0 90.1 90.0 0 1 -1 0 0 -1 -1 0 -1 0 0 0 | |||
* 20 mC 3.9 75.8 75.4 41.2 90.1 90.0 90.0 0 1 1 0 0 1 -1 0 -1 0 0 0 | |||
* 34 mP 5.1 41.2 53.5 53.5 90.3 90.1 90.1 1 0 0 0 0 0 1 0 0 -1 0 0 | |||
* 33 mP 5.3 41.2 53.5 53.5 90.3 90.1 90.1 -1 0 0 0 0 1 0 0 0 0 -1 0 | |||
* 32 oP 6.1 41.2 53.5 53.5 90.3 90.1 90.1 -1 0 0 0 0 1 0 0 0 0 -1 0 | |||
* 21 tP 7.3 53.5 53.5 41.2 90.1 90.1 90.3 0 1 0 0 0 0 -1 0 -1 0 0 0 | |||
39 mC 249.8 114.5 41.2 53.5 90.1 90.3 69.0 1 -2 0 0 1 0 0 0 0 0 1 0 | |||
and further down lists | |||
SPACE-GROUP UNIT CELL CONSTANTS UNIQUE Rmeas COMPARED LATTICE- | |||
NUMBER a b c alpha beta gamma CHARACTER | |||
5 75.8 75.4 41.2 90.0 90.0 90.0 900 40.8 5882 20 mC | |||
* 75 53.5 53.5 41.2 90.0 90.0 90.0 469 8.4 6313 21 tP | |||
89 53.5 53.5 41.2 90.0 90.0 90.0 282 39.2 6500 21 tP | |||
21 75.4 75.8 41.2 90.0 90.0 90.0 506 39.8 6276 23 oC | |||
5 75.4 75.8 41.2 90.0 90.1 90.0 901 40.7 5881 25 mC | |||
1 41.2 53.5 53.5 89.7 90.1 89.9 1699 8.2 5083 31 aP | |||
16 41.2 53.5 53.5 90.0 90.0 90.0 521 39.8 6261 32 oP | |||
3 53.5 41.2 53.5 90.0 90.3 90.0 931 8.2 5851 35 mP | |||
3 41.2 53.5 53.5 90.0 90.1 90.0 918 40.7 5864 33 mP | |||
3 41.2 53.5 53.5 90.0 90.1 90.0 918 40.9 5864 34 mP | |||
1 41.2 53.5 53.5 90.3 90.1 90.1 1699 8.2 5083 44 aP | |||
thus suggesting spacegroup #75 but we should know that this does not take screw axes into account. Therefore we use "pointless xdsin XDS_ASCII.HKL" and are told that this is actually spacegroup P4_2 (# 77). Alternatively, we could have inspected the list further down in CORRECT.LP: | |||
REFLECTIONS OF TYPE H,0,0 0,K,0 0,0,L OR EXPECTED TO BE ABSENT (*) | |||
-------------------------------------------------------------------- | |||
H K L RESOLUTION INTENSITY SIGMA INTENSITY/SIGMA #OBSERVED | |||
0 0 1 41.248 0.8487E+01 0.1339E+01 6.34 4 | |||
0 0 3 13.749 -0.7977E-03 0.3786E+01 0.00 4 | |||
0 0 4 10.312 0.1305E+06 0.4660E+04 27.99 1 | |||
0 0 5 8.250 0.1318E+01 0.6316E+01 0.21 4 | |||
0 0 6 6.875 0.2939E+05 0.5284E+03 55.61 4 | |||
0 0 7 5.893 0.5439E+01 0.9235E+01 0.59 4 | |||
0 0 8 5.156 0.1298E+05 0.2371E+03 54.73 4 | |||
0 0 9 4.583 0.3308E+02 0.1327E+02 2.49 4 | |||
0 0 10 4.125 0.3809E+05 0.6867E+03 55.47 4 | |||
0 0 11 3.750 -0.1987E+02 0.1767E+02 -1.12 4 | |||
0 0 12 3.437 0.5539E+04 0.1097E+03 50.48 4 | |||
0 0 13 3.173 0.2144E+01 0.2071E+02 0.10 4 | |||
0 0 14 2.946 0.2717E+04 0.6252E+02 43.46 4 | |||
0 0 15 2.750 0.1350E+02 0.2482E+02 0.54 4 | |||
0 0 16 2.578 0.1178E+04 0.4383E+02 26.88 4 | |||
0 0 17 2.426 -0.7420E+01 0.3549E+02 -0.21 4 | |||
0 0 18 2.292 0.4104E+03 0.4681E+02 8.77 4 | |||
and realize that this also tells us that the spacegroup is 77, not 75. | |||
After his comes the table that tells us the quality of our data: | |||
NOTE: Friedel pairs are treated as different reflections. | |||
SUBSET OF INTENSITY DATA WITH SIGNAL/NOISE >= -3.0 AS FUNCTION OF RESOLUTION | |||
RESOLUTION NUMBER OF REFLECTIONS COMPLETENESS R-FACTOR R-FACTOR COMPARED I/SIGMA R-meas Rmrgd-F Anomal SigAno Nano | |||
LIMIT OBSERVED UNIQUE POSSIBLE OF DATA observed expected Corr | |||
6.06 4189 556 560 99.3% 2.4% 2.7% 4187 66.74 2.6% 1.1% 74% 1.841 247 | |||
4.31 7575 1008 1008 100.0% 2.6% 2.9% 7575 62.90 2.8% 1.2% 62% 1.463 473 | |||
3.53 9468 1283 1283 100.0% 3.4% 3.2% 9468 53.37 3.6% 1.7% 41% 1.200 612 | |||
3.06 11364 1540 1540 100.0% 5.1% 4.7% 11364 34.45 5.5% 3.1% 17% 0.995 739 | |||
2.74 12628 1695 1695 100.0% 10.2% 10.4% 12628 17.09 11.0% 7.9% 2% 0.797 819 | |||
2.50 14121 1916 1916 100.0% 21.5% 23.1% 14121 8.42 23.1% 17.1% -4% 0.691 926 | |||
2.31 15155 2079 2079 100.0% 46.6% 50.5% 15155 3.92 50.2% 38.6% -1% 0.734 1010 | |||
2.16 12185 2104 2228 94.4% 113.3% 117.0% 12178 1.44 124.7% 119.0% 5% 0.753 1018 | |||
2.04 5134 1601 2347 68.2% 274.7% 291.2% 4913 0.40 325.5% 400.7% 1% 0.608 606 | |||
total 91819 13782 14656 94.0% 5.7% 5.9% 91589 20.24 6.2% 15.0% 12% 0.897 6450 | |||
So the anomalous signal goes to about 3.3 A (which is where 30% would be, in the "Anomal Corr" column), and the useful resolution goes to 2.16 A, I'd say (pls note that this table treats Friedels separately; merging them increases I/sigma by another factor of 1.41). | |||
We could now modify XDS.INP to have | |||
JOB=CORRECT ! not XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT | |||
SPACE_GROUP_NUMBER= 77 | |||
We | |||
JOB= DEFPIX | |||
SPACE_GROUP_NUMBER= | |||
UNIT_CELL_CONSTANTS= 53.10 53.10 40.90 90.000 90.000 90.000 | UNIT_CELL_CONSTANTS= 53.10 53.10 40.90 90.000 90.000 90.000 | ||
and run xds again, to obtain the final CORRECT.LP and XDS_ASCII.HKL with the correct spacegroup, but the statistics in 75 and 77 are the same, for all practical purposes (the 8 reflections known to be extinct do not make much difference). | |||
Following this, we create XDSCONV.INP with the lines | |||
SPACE_GROUP_NUMBER= 77 ! can leave out if CORRECT already ran in #77 | |||
UNIT_CELL_CONSTANTS= 53.10 53.10 40.90 90 90 90 ! same here | |||
INPUT_FILE=XDS_ASCII.HKL | |||
OUTPUT_FILE=temp.hkl CCP4 | |||
and run "xdsconv", and then | |||
<pre> | |||
f2mtz HKLOUT temp.mtz<F2MTZ.INP | |||
cad HKLIN1 temp.mtz HKLOUT output_file_name.mtz<<EOF | |||
LABIN FILE 1 ALL | |||
END | |||
EOF | |||
</pre> | |||
which gives us output_file_name.mtz, which we rename to xds-2ovo-1-F.mtz. Similarly, using | |||
OUTPUT_FILE=temp.hkl CCP4_I | |||
we end up with a MTZ file with intensities, which we rename to xds-2ovo-1-I.mtz. | |||
===dataset | ===dataset 2=== | ||
This works exactly the same way as dataset | This works exactly the same way as dataset 1. | ||
==SHELXC/D/E structure solution== | ==SHELXC/D/E structure solution== | ||
This is done in a subdirectory of the XDS data reduction directory. Here, we generate XDSCONV.INP (I used MERGE=TRUE, sometimes the results are better that way) and run xdsconv and [[ccp4com:SHELX_C/D/E|SHELXC]]: | This is done in a subdirectory of the XDS data reduction directory. Here, we generate XDSCONV.INP (I used MERGE=TRUE, sometimes the results are better that way) and run xdsconv and [[ccp4com:SHELX_C/D/E|SHELXC]]: | ||
<pre> | |||
#!/bin/csh -f | |||
cat > XDSCONV.INP <<end | |||
INPUT_FILE=../XDS_ASCII.HKL | |||
OUTPUT_FILE=temp.hkl SHELX | |||
MERGE=TRUE | |||
FRIEDEL'S_LAW=FALSE | |||
end | |||
xdsconv | |||
shelxc j <<end | |||
SAD temp.hkl | |||
CELL 53.10 53.10 40.90 90 90 90 | |||
SPAG P42 | |||
MAXM 2 | |||
end | |||
This writes j.hkl, j_fa.hkl and j_fa.ins. However, we overwrite j_fa.ins now: | This writes j.hkl, j_fa.hkl and j_fa.ins. However, we overwrite j_fa.ins now: | ||
cat > j_fa.ins <<end | |||
TITL j_fa.ins SAD in P42 | |||
CELL 0.98000 53.10 53.10 40.90 90.00 90.00 90.00 | |||
LATT -1 | |||
SYMM -Y, X, 1/2+Z | |||
SYMM -X, -Y, Z | |||
SYMM Y, -X, 1/2+Z | |||
SFAC S | |||
UNIT 128 | |||
SHEL 999 3.0 | |||
FIND 3 | |||
NTRY 100 | |||
MIND -1.0 2.2 | |||
ESEL 1.3 | |||
TEST 0 99 | |||
SEED 1 | |||
PATS | |||
HKLF 3 | |||
END | |||
end | |||
shelxd j_fa | |||
This gives best CC All/Weak of 35.61 / 26.03 for dataset 2, and best CC All/Weak of 36.74 / 21.55 for dataset 1. | This gives best CC All/Weak of 35.61 / 26.03 for dataset 2, and best CC All/Weak of 36.74 / 21.55 for dataset 1. |