Simulated-1g1c: Difference between revisions

Jump to navigation Jump to search
Line 720: Line 720:


so the strongest peak corresponds to the translation of molecules (0,0.5,0) but the origin peak is at 1/2 of that size, which appears significant.
so the strongest peak corresponds to the translation of molecules (0,0.5,0) but the origin peak is at 1/2 of that size, which appears significant.
=== Finally solving the structure ===
After thinking about the most likely way that James Holton used to produce the simulated data, I hypothesized that within each frame, the radiation damage is most likely constant, and that there is a jump in radiation damage from frame 1 to 2. Unfortunately for this scenario, the scaling algorithm in CORRECT and XSCALE was changed for the version of Dec-2010, such that it produces best results when the changes are smooth. Therefore, I tried the penultimate version of XSCALE - and indeed that gives significantly better results:
      NOTE:      Friedel pairs are treated as different reflections.
SUBSET OF INTENSITY DATA WITH SIGNAL/NOISE >= -3.0 AS FUNCTION OF RESOLUTION
RESOLUTION    NUMBER OF REFLECTIONS    COMPLETENESS R-FACTOR  R-FACTOR COMPARED I/SIGMA  R-meas  Rmrgd-F  Anomal  SigAno  Nano
  LIMIT    OBSERVED  UNIQUE  POSSIBLE    OF DATA  observed  expected                                      Corr
    8.05        1922    467      476      98.1%      4.0%      5.8%    1888  22.37    4.5%    2.5%    84%  1.952    142
    5.69        3494    864      882      98.0%      4.7%      6.0%    3429  20.85    5.4%    3.2%    77%  1.707    297
    4.65        4480    1111      1136      97.8%      5.1%      5.9%    4395  21.13    5.8%    3.3%    68%  1.518    406
    4.03        5197    1325      1357      97.6%      5.3%      6.0%    5101  20.57    6.1%    3.8%    48%  1.280    499
    3.60        5915    1500      1533      97.8%      6.0%      6.3%    5803  19.99    6.9%    4.1%    41%  1.169    572
    3.29        6601    1657      1694      97.8%      6.5%      6.5%    6476  19.42    7.5%    4.6%    27%  1.066    634
    3.04        7080    1789      1830      97.8%      7.6%      7.2%    6948  17.50    8.7%    5.4%    23%  1.037    693
    2.85        7682    1945      1979      98.3%      8.8%      9.0%    7528  14.75    10.1%    7.0%    15%  0.935    750
    2.68        8099    2062      2100      98.2%      11.0%    11.1%    7933  12.81    12.7%    9.1%    13%  0.881    795
    2.55        8351    2155      2201      97.9%      13.3%    13.7%    8178  11.16    15.4%    11.0%    12%  0.872    836
    2.43        9195    2327      2376      97.9%      16.5%    17.2%    9003    9.49    19.0%    15.1%    8%  0.838    904
    2.32        9495    2377      2428      97.9%      19.8%    20.3%    9304    8.62    22.7%    17.3%    4%  0.818    934
    2.23        9936    2498      2551      97.9%      20.8%    21.7%    9751    8.30    23.9%    17.5%    4%  0.830    987
    2.15      10217    2577      2622      98.3%      23.3%    24.0%    9990    7.74    26.7%    19.2%    4%  0.814    998
    2.08      10710    2704      2766      97.8%      27.1%    28.6%    10506    6.82    31.1%    23.5%    5%  0.812    1071
    2.01      10899    2777      2839      97.8%      28.1%    29.2%    10648    6.46    32.3%    25.0%    6%  0.813    1059
    1.95      11361    2878      2937      98.0%      34.4%    35.5%    11134    5.55    39.5%    30.3%    3%  0.780    1136
    1.90      11639    2941      3000      98.0%      40.5%    41.5%    11403    4.88    46.6%    35.9%    0%  0.787    1163
    1.85      12020    3068      3123      98.2%      52.2%    55.1%    11752    3.79    60.0%    47.4%    6%  0.775    1195
    1.80      11506    3003      3173      94.6%      60.8%    64.8%    11229    3.23    70.1%    58.8%    0%  0.765    1148
    total      165799  42025    43003      97.7%      11.7%    12.3%  162399  10.07    13.5%    14.8%    17%  0.908  16219
Using these data (stored in [ftp://turn5.biologie.uni-konstanz.de/pub/xds-datared/1g1c/xscale.oldversion]), I was finally able to solve the structure (see screenshot below) - SHELXE traced 160 out of 198 residues. All files produced by SHELXE are in [ftp://turn5.biologie.uni-konstanz.de/pub/xds-datared/1g1c/shelx].
[[File:1g1c-shelxe.png]]
It is worth mentioning that James Holton confirmed that my hypothesis is true; he also mentions that this approach is a good approximation for a multi-pass data collection.
However, generally the smooth scaling gives better results than the previous method of assigning the same scale factor to all reflections of a frame; in particular, it correctly treats those reflections near the border of two frames.  This example shows that it is important to
* have the best data available if a structure is difficult to solve
* know the options (programs, algorithms)
* know as much as possible about the experiment
2,684

edits

Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu