DeltaCC12: Difference between revisions

Jump to navigation Jump to search
2 bytes removed ,  5 September 2018
no edit summary
No edit summary
No edit summary
Line 27: Line 27:
<math>\sigma^2_{\epsilon i} =  \frac{1}{n-1} \cdot \left ( \sum^n_{j} x^2_{j} - \frac{\left ( \sum^n_{j}x_{j} \right )^2}{ n} \right )    \backslash \frac{n}{2} </math>
<math>\sigma^2_{\epsilon i} =  \frac{1}{n-1} \cdot \left ( \sum^n_{j} x^2_{j} - \frac{\left ( \sum^n_{j}x_{j} \right )^2}{ n} \right )    \backslash \frac{n}{2} </math>


With <math>x_{j} </math> , a single observation j of all observations n of one reflection i. <math>\sigma^2_{\epsilon i} </math> is then divided by the factor  <math>\frac{n}{2} </math>, because the variance of the sample mean (the merged observations) is the quantity of interest. As we are considering CC12, the variance <math>\sigma^2_{\epsilon i} </math> is divided by <math>\frac{n}{2} </math> and not only by '''n''' as described in [https://en.wikipedia.org/wiki/Sample_mean_and_covariance#Variance_of_the_sample_mean ], because we are calculating the random errors of the merged intensities of a half-dataset.   The single variance terms are then summed up for all reflections n in a resolution shell and divided by N, the total number of unique reflections.
With <math>x_{j} </math> , a single observation j of all observations n of one reflection i. <math>\sigma^2_{\epsilon i} </math> is then divided by the factor  <math>\frac{n}{2} </math>, because the variance of the sample mean (the merged observations) is the quantity of interest. As we are considering CC12, the variance <math>\sigma^2_{\epsilon i} </math> is divided by <math>\frac{n}{2} </math> and not only by '''n''' as described in [https://en.wikipedia.org/wiki/Sample_mean_and_covariance#Variance_of_the_sample_mean ], because we are calculating the random errors of the merged intensities of a half-dataset. The single variance terms are then summed up for all reflections i in a resolution shell and divided by N, the total number of unique reflections.




54

edits

Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu