2,684
edits
Line 12: | Line 12: | ||
===''' <math>\sigma^2_{\epsilon} </math>'''=== | ===''' <math>\sigma^2_{\epsilon} </math>'''=== | ||
With <math>x_{j,i} </math> , a single observation j of all observations | With <math>x_{j,i} </math> , a single observation j of all n observations of one reflection i, the average of all sample variances of the mean across all unique reflections of a resolution shell is obtained by calculating the unbiased sample variance of the mean for every unique reflection i by: | ||
<math>s^2_{\epsilon i} = \frac{1}{n_{i}-1} \cdot \left ( \sum^{n_{i}}_{j} x^2_{j,i} - \frac{\left ( \sum^{n_{i}}_{j}x_{j,i} \right )^2}{n_{i}} \right ) / \frac{n_{i}}{2} </math> | <math>s^2_{\epsilon i} = \frac{1}{n_{i}-1} \cdot \left ( \sum^{n_{i}}_{j} x^2_{j,i} - \frac{\left ( \sum^{n_{i}}_{j}x_{j,i} \right )^2}{n_{i}} \right ) / \frac{n_{i}}{2} </math> |