2VB1: Difference between revisions

3,617 bytes added ,  11 March 2011
no edit summary
No edit summary
No edit summary
Line 11: Line 11:
  SILICON=34.812736 ! account for theta-dependant absorption in the CCD's phosphor. The correction is only  
  SILICON=34.812736 ! account for theta-dependant absorption in the CCD's phosphor. The correction is only  
  ! significant for hi-res data; 34.812736=32*(value for silicon as printed to CORRECT.LP if SILICON= not given)
  ! significant for hi-res data; 34.812736=32*(value for silicon as printed to CORRECT.LP if SILICON= not given)
  MAXIMUM_NUMBER_OF_PROCESSORS=4 ! for fast processing on a machine with many cores, use (e.g. for 16 cores)
  MAXIMUM_NUMBER_OF_PROCESSORS=4 ! for fast processing on a machine with many cores (e.g. for 16 cores)
  MAXIMUM_NUMBER_OF_JOBS=6 ! This "overcommits" the available cores but on the whole this produces results faster (see below).
  MAXIMUM_NUMBER_OF_JOBS=6 ! "overcommit" the available cores but on the whole this produces results faster (see below)
  SPACE_GROUP_NUMBER=1                  ! this is known
  SPACE_GROUP_NUMBER=1                  ! this is known
  UNIT_CELL_CONSTANTS=  27.07 31.25 33.76 87.98 108.00 112.11  ! from 2vb1
  UNIT_CELL_CONSTANTS=  27.07 31.25 33.76 87.98 108.00 112.11  ! from 2vb1
Line 187: Line 187:
  NUMBER OF UNIQUE ACCEPTED REFLECTIONS              171714
  NUMBER OF UNIQUE ACCEPTED REFLECTIONS              171714


=== further optimization ===
Another round of optimization again improves the R-factors and I/sigma at high resolution a bit, but it also increased the misfits back to 8200. At this point I decided to switch to FRIEDEL'S_LAW=FALSE, and the resulting table is:
      NOTE:      Friedel pairs are treated as different reflections.
SUBSET OF INTENSITY DATA WITH SIGNAL/NOISE >= -3.0 AS FUNCTION OF RESOLUTION
RESOLUTION    NUMBER OF REFLECTIONS    COMPLETENESS R-FACTOR  R-FACTOR COMPARED I/SIGMA  R-meas  Rmrgd-F  Anomal  SigAno  Nano
  LIMIT    OBSERVED  UNIQUE  POSSIBLE    OF DATA  observed  expected                                      Corr
    1.77        9599    9023    19002      47.5%      1.5%      1.5%    1152  36.81    2.1%    1.6%    0%  0.000      0
    1.26      31196  28239    33446      84.4%      1.4%      1.6%    5914  34.40    2.0%    1.6%    0%  0.000      0
    1.03      40125  35205    43274      81.4%      1.7%      1.7%    9840  30.09    2.4%    2.0%    0%  0.000      0
    0.89      46987  40188    51124      78.6%      2.3%      2.3%    13598  22.03    3.2%    3.4%    0%  0.000      0
    0.80      52229  43723    57738      75.7%      3.9%      3.9%    17012  14.44    5.5%    6.6%    0%  0.000      0
    0.73      56830  46674    64088      72.8%      7.1%      6.8%    20312    9.30    10.1%    13.2%    0%  0.000      0
    0.68      60488  48814    69544      70.2%      13.9%    13.5%    23348    5.26    19.6%    27.1%    0%  0.000      0
    0.63      36190  28598    74736      38.3%      28.2%    29.7%    15184    2.70    39.8%    57.3%    0%  0.000      0
    0.60        9246    7246    79466        9.1%      57.8%    62.4%    4000    1.26    81.8%  122.0%    0%  0.000      0
    total      342890  287710    492418      58.4%      2.8%      2.8%  110360  16.19    3.9%    9.9%    0%  0.000      0
NUMBER OF REFLECTIONS IN SELECTED SUBSET OF IMAGES  345355
NUMBER OF REJECTED MISFITS                            2448
NUMBER OF SYSTEMATIC ABSENT REFLECTIONS                  0
NUMBER OF ACCEPTED OBSERVATIONS                    342907
NUMBER OF UNIQUE ACCEPTED REFLECTIONS              287724
Indeed this brings the number of misfits to well below 1%, and it does make some sense.


== XSCALE results ==
== XSCALE results ==


a few sweeps were optimized by copying the two lines containing mosaicity and beam divergence values from INTEGRATE.LP to XDS.INP
The same strategy as shown for sweep e was used for sweeps a-d and f-h. XSCALE.INP is:


=== main table ===
SPACE_GROUP_NUMBER=   1
UNIT_CELL_CONSTANTS= 27.07 31.25 33.76 87.98 108.00 112.11 !  from 2vb1 PDB entry
! cellparm for a-h gives  27.083    31.269    33.773    87.978  107.998  112.133
 
OUTPUT_FILE=lys-xds.ahkl
FRIEDEL'S_LAW=TRUE
RESOLUTION_SHELLS=2.91 2.06 1.68 1.45 1.30 1.19 1.10 1.03 0.97 0.92 0.88 0.84 0.81 0.78 0.75 0.73 0.71 0.69 0.67 0.65
INPUT_FILE=../a/XDS_ASCII.HKL
INCLUDE_RESOLUTION_RANGE=30 0.65
INPUT_FILE=../b/XDS_ASCII.HKL
INCLUDE_RESOLUTION_RANGE=30 0.65
INPUT_FILE=../c/XDS_ASCII.HKL
INCLUDE_RESOLUTION_RANGE=30 0.65
INPUT_FILE=../d/XDS_ASCII.HKL
INCLUDE_RESOLUTION_RANGE=30 0.65
INPUT_FILE=../e/XDS_ASCII.HKL
INCLUDE_RESOLUTION_RANGE=30 0.65
INPUT_FILE=../f/XDS_ASCII.HKL
INCLUDE_RESOLUTION_RANGE=30 0.65
INPUT_FILE=../g/XDS_ASCII.HKL
INCLUDE_RESOLUTION_RANGE=30 0.65
INPUT_FILE=../h/XDS_ASCII.HKL
INCLUDE_RESOLUTION_RANGE=30 0.65
 
=== XSCALE.LP main table ===




Line 221: Line 274:
     total    1433128  190017    191232      99.4%      3.3%      3.5%  1431595  33.18    3.5%    3.5%    2%  0.801  170074
     total    1433128  190017    191232      99.4%      3.3%      3.5%  1431595  33.18    3.5%    3.5%    2%  0.801  170074


Remark: The first frames of sweeps g and h show a shadow in one corner of the detector. Nothing was done by me to exclude this shadow from processing (but one should do so if the resolution should be expanded beyond 0.65 A which the XSCALE statistics suggest to be possible). There is however no facility in XDS to exclude bad areas of specific frames in a dataset; one would need to chop the dataset into two parts.


== Comparison of data processing: published (2006) ''vs'' XDS results ==
== Comparison of data processing: published (2006) ''vs'' XDS results ==
2,652

edits